ﻻ يوجد ملخص باللغة العربية
Electronic structure calculations performed on very large supercells have shown that the local charge excesses in metallic alloys are related through simple linear relations to the local electrostatic field resulting from distribution of charges in the whole crystal. By including local external fields in the single site Coherent Potential Approximation theory, we develop a novel theoretical scheme in which the local charge excesses for random alloys can be obtained as the responses to local external fields. Our model maintains all the computational advantages of a single site theory but allows for full charge relaxation at the impurity sites. Through applications to CuPd and CuZn alloys, we find that, as a general rule, non linear charge rearrangements occur at the impurity site as a consequence of the complex phenomena related with the electronic screening of the external potential. This nothwithstanding, we observe that linear relations hold between charge excesses and external potentials, in quantitative agreement with the mentioned supercell calculations, and well beyond the limits of linearity for any other site property.
Electronic structure calculations performed on very large supercells have shown that the local charge excesses in metallic alloys are related through simple linear relations to the local electrostatic field resulting from distribution of charges in t
Numerical results for the local field distributions of a family of Ising spin-glass models are presented. In particular, the Edwards-Anderson model in dimensions two, three, and four is considered, as well as spin glasses with long-range power-law-mo
The distribution of local charge excesses (DLC) in metallic alloys, previously obtained as a result of the analysis of order N electronic structure calculations, is derived from a variational principle. A phenomenological Charge Excess Functional (CE
Charge Distributions in Metallic Alloys: a Charge Excess Functional theory approach
The coherent potential approximation (CPA) is extended to describe satisfactorily the motion of particles in a random potential which is spatially correlated and smoothly varying. In contrast to existing cluster-CPA methods, the present scheme preser