ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Charge Excesses in Metallic Alloys: a Local Field Coherent Potential Approximation Theory

88   0   0.0 ( 0 )
 نشر من قبل Ezio Bruno
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electronic structure calculations performed on very large supercells have shown that the local charge excesses in metallic alloys are related through simple linear relations to the local electrostatic field resulting from distribution of charges in the whole crystal. By including local external fields in the single site Coherent Potential Approximation theory, we develop a novel theoretical scheme in which the local charge excesses for random alloys can be obtained as the responses to local external fields. Our model maintains all the computational advantages of a single site theory but allows for full charge relaxation at the impurity sites. Through applications to CuPd and CuZn alloys, we find that, as a general rule, non linear charge rearrangements occur at the impurity site as a consequence of the complex phenomena related with the electronic screening of the external potential. This nothwithstanding, we observe that linear relations hold between charge excesses and external potentials, in quantitative agreement with the mentioned supercell calculations, and well beyond the limits of linearity for any other site property.



قيم البحث

اقرأ أيضاً

Electronic structure calculations performed on very large supercells have shown that the local charge excesses in metallic alloys are related through simple linear relations to the local electrostatic field resulting from distribution of charges in t he whole crystal. By including local external fields in the single site Coherent Potential Approximation theory, we develop a novel theoretical scheme in which the local charge excesses for random alloys can be obtained as the responses to local external fields. Our model maintains all the computational advantages of a single site theory but allows for full charge relaxation at the impurity sites. Through applications to CuPd and CuZn alloys, we find that, as a general rule, non linear charge rearrangements occur at the impurity site as a consequence of the complex phenomena related with the electronic screening of the external potential. This nothwithstanding, we observe that linear relations hold between charge excesses and external potentials, in quantitative agreement with the mentioned supercell calculations, and well beyond the limits of linearity for any other site property.
The coherent potential approximation (CPA) is extended to describe satisfactorily the motion of particles in a random potential which is spatially correlated and smoothly varying. In contrast to existing cluster-CPA methods, the present scheme preser ves the simplicity of the conventional CPA in using a single self-energy function. Its accuracy is checked by a comparison with the exact moments of the Greens function, and with the spectral function from numerical simulations. The scheme is applied to excitonic absorption spectra in different spatial dimensions.
The class of the Generalized Coherent Potential Approximations (GCPA) to the Density Functional Theory (DFT) is introduced within the Multiple Scattering Theory formalism for dealing with, ordered or disordered, metallic alloys. All GCPA theories are based on a common ansatz for the kinetic part of the Hohenberg-Kohn functional and each theory of the class is specified by an external model concerning the potential reconstruction. The GCPA density functional consists of marginally coupled local contributions, does not depend on the details of the charge density and can be exactly rewritten as a function of the appropriate charge multipole moments associated with each lattice site. A general procedure based on the integration of the qV laws is described that allows for the explicit construction the same function. The coarse grained nature of the GCPA density functional implies great computational advantages and is connected with the O(N) scalability of GCPA algorithms. Moreover, it is shown that a convenient truncated series expansion of the GCPA functional leads to the Charge Excess Functional (CEF) theory [E. Bruno, L. Zingales and Y. Wang, Phys. Rev. Lett. {bf 91}, 166401 (2003)] which here is offered in a generalized version that includes multipolar interactions. CEF and the GCPA numerical results are compared with status of art LAPW full-potential density functional calculations for 62, bcc- and fcc-based, ordered CuZn alloys, in all the range of concentrations. These extensive tests show that the discrepancies between GCPA and CEF are always within the numerical accuracy of the calculations, both for the site charges and the total energies. Furthermore, GCPA and CEF very carefully reproduce the LAPW site charges and the total energy trends.
186 - Stefan Boettcher 2008
Numerical results for the local field distributions of a family of Ising spin-glass models are presented. In particular, the Edwards-Anderson model in dimensions two, three, and four is considered, as well as spin glasses with long-range power-law-mo dulated interactions that interpolate between a nearest-neighbour Edwards-Anderson system in one dimension and the infinite-range Sherrington-Kirkpatrick model. Remarkably, the local field distributions only depend weakly on the range of the interactions and the dimensionality, and show strong similarities except for near zero local field.
The distribution of local charge excesses (DLC) in metallic alloys, previously obtained as a result of the analysis of order N electronic structure calculations, is derived from a variational principle. A phenomenological Charge Excess Functional (CE F) theory is obtained which is determined by three concentration dependent, material specific, parameters that can be obtained from {it ab initio} calculations. The theory requires modest computational efforts and reproduces with an excellent accuracy the DLC and the electrostatic energies of ordered, substitutionally disordered or segregating metallic alloys and, hence, can be considered an efficient approach alternative to conventional electronic structure calculations. The substantial reduction of computing time opens new perspectives for the understanding of metallic systems and their mechanical properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا