ﻻ يوجد ملخص باللغة العربية
The family of superconducting fullerides (NH_3)_xNaK_2C_60 shows an anomalous correlation between T_c and lattice parameter. To better understand the origin of this anomaly we have studied a representative x=0.75 compound using SQUID magnetometry and MuSR spectroscopy. The lower critical field H_c1, measured by the trapped magnetization method, is less than 1 G, a very small value as compared with that of other fullerides. Muon spin depolarization in the superconducting phase shows also quite small local field inhomogeneities, of the order of those arising from nuclear dipolar fields. On the other hand, the 40 T value for H_c2, as extracted from magnetometry data, is comparable to that of other fullerides. We show that these observations cannot be rationalized within the framework of the Ginzburg-Landau theory of superconductivity. Instead, the anomalous magnetic properties could be interpreted taking into account the role played by polaronic instabilities in this material.
The discovery of superconductivity in Sr-doped NdNiO$_{2}$ is a crucial breakthrough in the long pursuit for nickel oxide materials with electronic and magnetic properties similar to those of the cuprates. NdNiO$_2$ is the infinite-layer member of a
The superconducting properties of the recently discovered double Fe$_2$As$_2$ layered high-$T_c$ superconductor RbCa$_2$Fe$_4$As$_4$F$_2$ with $T_capprox$ 30~K have been investigated using magnetization, heat capacity, transverse-field (TF) and zero-
We have investigated the bulk and microscopic properties of the rhombohedral intermediate valence superconductor CeIr$_3$ by employing magnetization, heat capacity, and muon spin rotation and relaxation ($mu$SR) measurements. The magnetic susceptibil
The compound Sr$_{0.5}$Ce$_{0.5}$FBiS$_{2}$ belongs to the intensively studied family of layered BiS$_2$ superconductors. It attracts special attention because superconductivity at $T_{sc} = 2.8$ K was found to coexist with local-moment ferromagnetic
We use muon spin relaxation (muSR) to investigate the magnetic properties of a bulk form diluted ferromagnetic semiconductor (DFS) Li1.15(Zn0.9Mn0.1)P with T_C ~ 22 K. MuSR results confirm the gradual development of ferromagnetic ordering below T_C w