ﻻ يوجد ملخص باللغة العربية
We have investigated the bulk and microscopic properties of the rhombohedral intermediate valence superconductor CeIr$_3$ by employing magnetization, heat capacity, and muon spin rotation and relaxation ($mu$SR) measurements. The magnetic susceptibility indicates bulk superconductivity below $T_mathrm{C} = 3.1$~K. Heat capacity data also reveal a bulk superconducting transition at $T_mathrm{C} = 3.1$~K with a second weak anomaly near 1.6~K. At $T_{mathrm{C}}$, the jump in heat capacity $Delta C$/$gamma T_{mathrm{C}} sim 1.39(1)$, is slightly less than the BCS weak coupling limit of 1.43. Transverse-field $mu$SR measurements suggest a fully gapped, isotropic, $s$-wave superconductivity with 2$Delta(0)/k_{mathrm{B}}T_{mathrm{C}} = 3.76(3)$, very close to 3.56, the BCS gap value for weak-coupling superconductors. From the temperature variation of magnetic penetration depth, we have also determined the London penetration depth $lambda_{mathrm{L}}(0) = 435(2)$~nm, the carriers effective mass enhancement $m^{*} = 1.69(1)m_{mathrm{e}}$ and the superconducting carrier density $n_{mathrm{s}} = 2.5(1)times 10^{26}$ carriers m$^{-3}$. The fact that LaIr$_3$, with no $4f$-electrons, and CeIr$_3$ with $4f^{n}$ electrons where $n le 1$-electron (Ce ion in a valence fluctuating state), both exhibit the same $s$-wave gap symmetry indicates that the physics of these two compounds is governed by the Ir-$d$ band near the Fermi-level, which is in agreement with previous band structure calculations.
The superconducting properties of the recently discovered double Fe$_2$As$_2$ layered high-$T_c$ superconductor RbCa$_2$Fe$_4$As$_4$F$_2$ with $T_capprox$ 30~K have been investigated using magnetization, heat capacity, transverse-field (TF) and zero-
The pairing mechanism in iron-based superconductors is the subject of ongoing debate. Proximity to an antiferromagnetic phase suggests that pairing is mediated by spin fluctuations, but orbital fluctuations have also been invoked. The former typicall
Some of the most remarkable phenomena---and greatest theoretical challenges---in condensed matter physics arise when $d$ or $f$ electrons are neither fully localized around their host nuclei, nor fully itinerant. This localized/itinerant duality unde
A high quality superconducting Li$_{0.68}$NbO$_2$ polycrystalline sample was synthesized by deintercalation of Li ions from Li$_{0.93}$NbO$_2$. The field dependent resistivity and specific heat were measured down to 0.5 K. The upper critical field $H
We establish the general form of effective interacting Hamiltonian for LaOFeAs system based on the symmetry consideration. The peculiar symmetry property of the electron states yields unusual form of electron-electron interaction. Based on the genera