ﻻ يوجد ملخص باللغة العربية
Spins based in silicon provide one of the most promising architectures for quantum computing. Quantum dots are an inherently scalable technology. Here, we combine these two concepts into a workable design for a silicon-germanium quantum bit. The novel structure incorporates vertical and lateral tunneling, provides controlled coupling between dots, and enables single electron occupation of each dot. Precise modeling of the design elucidates its potential for scalable quantum computing. For the first time it is possible to translate the requirements of fault-tolerant error correction into specific requirements for gate voltage control electronics in quantum dots. We demonstrate that these requirements are met by existing pulse generators in the kHz-MHz range, but GHz operation is not yet achievable. Our calculations further pinpoint device features that enhance operation speed and robustness against leakage errors. We find that the component technologies for silicon quantum dot quantum computers are already in hand.
Spins based in silicon provide one of the most promising architectures for quantum computing. A scalable design for silicon-germanium quantum dot qubits is presented. The design incorporates vertical and lateral tunneling. Simulations of a four-qubit
The spin states of single electrons in gate-defined quantum dots satisfy crucial requirements for a practical quantum computer. These include extremely long coherence times, high-fidelity quantum operation, and the ability to shuttle electrons as a m
Recent advances in quantum error correction (QEC) codes for fault-tolerant quantum computing cite{Terhal2015} and physical realizations of high-fidelity qubits in a broad range of platforms cite{Kok2007, Brown2011, Barends2014, Waldherr2014, Dolde201
We derive a general relation between the fine structure splitting (FSS) and the exciton polarization angle of self-assembled quantum dots (QDs) under uniaxial stress. We show that the FSS lower bound under external stress can be predicted by the exci
RF reflectometry offers a fast and sensitive method for charge sensing and spin readout in gated quantum dots. We focus in this work on the implementation of RF readout in accumulation-mode gate-defined quantum dots, where the large parasitic capacit