ﻻ يوجد ملخص باللغة العربية
The XY model with quenched random disorder is studied by a zero temperature domain wall renormalization group method in 2D and 3D. Instead of the usual phase representation we use the charge (vortex) representation to compute the domain wall, or defect, energy. For the gauge glass corresponding to the maximum disorder we reconfirm earlier predictions that there is no ordered phase in 2D but an ordered phase can exist in 3D at low temperature. However, our simulations yield spin stiffness exponents $theta_{s} approx -0.36$ in 2D and $theta_{s} approx +0.31$ in 3D, which are considerably larger than previous estimates and strongly suggest that the lower critical dimension is less than three. For the $pm J$ XY spin glass in 3D, we obtain a spin stiffness exponent $theta_{s} approx +0.10$ which supports the existence of spin glass order at finite temperature in contrast with previous estimates which obtain $theta_{s}< 0$. Our method also allows us to study renormalization group flows of both the coupling constant and the disorder strength with length scale $L$. Our results are consistent with recent analytic and numerical studies suggesting the absence of a re-entrant transition in 2D at low temperature. Some possible consequences and connections with real vortex systems are discussed.
We revisit perturbative RG analysis in the replicated Landau-Ginzburg description of the Random Field Ising Model near the upper critical dimension 6. Working in a field basis with manifest vicinity to a weakly-coupled Parisi-Sourlas supersymmetric f
Lifshitz transitions in two 2D systems with a single quadratic band touching point as the chemical potential is varied have been studied here. The effects of interactions have been studied using the renormalization group (RG) and it is found that at
The two-dimensional ferromagnetic anisotropic Ashkin-Teller model is investigated through a real-space renormalization-group approach. The critical frontier, separating five distinct phases, recover all the known exacts results for the square lattice
We employ an adaptation of a strong-disorder renormalization-group technique in order to analyze the ferro-paramagnetic quantum phase transition of Ising chains with aperiodic but deterministic couplings under the action of a transverse field. In the
The ground state of a hole-doped t-t-J ladder with four legs favors a striped charge distribution. Spin excitation from the striped ground state is known to exhibit incommensurate spin excitation near q=(pi,pi) along the leg direction (qx direction).