ﻻ يوجد ملخص باللغة العربية
We characterize the coexistence of itinerant ferromagnetism and spin-triplet superconductivity within a single mechanism involving local (Hunds rule) exchange among $d$ electrons. The ratio of transition temperatures and the spin anisotropy of the superconducting gap is estimated for $ZrZn_2$. The $A$ phase is stable in very low applied and molecular fields, whereas the $A1$ phases persists in higher fields. A small residual magnetic moment is present below the Stoner threshold in the superconducting phase.
We discuss general implications of the local spin-triplet pairing among correlated fermions that is induced by the Hunds rule coupling in orbitally degenerate systems. The quasiparticle energies, the magnetic moment, and the superconducting gap are d
We discuss general implications of the local spin-triplet pairing among fermions induced by local ferromagnetic exchange, example of which is the Hunds rule coupling. The quasiparticle energy and their wave function are determined for the three princ
Strongly correlated systems exhibit a rich phenomenology due to the antagonism of a diversity of ordered phases. The aftermath of this interplay can lead to a coexistence which takes place at a microscopic level, or, a phase separation in which non-o
High-quality KFe2As2 single crystals have been studied by transport, magnetization and low-T specific heat measurements. Their analysis shows that superconductivity occurs (in some cases coexists) in the vicinity of disordered magnetic phases (Griffi
Superconducting characteristics such as the Meissner-Ochsenfeld state, screening supercurrents and hysteresis loops of type-II superconductors were observed from the temperature and magnetic field dependences of the magnetic moment, m(T, H), in graph