ﻻ يوجد ملخص باللغة العربية
We discuss general implications of the local spin-triplet pairing among fermions induced by local ferromagnetic exchange, example of which is the Hunds rule coupling. The quasiparticle energy and their wave function are determined for the three principal phases with the gap, which is momentum independent. We utilize the Bogolyubov-Nambu-De Gennes approach, which in the case of triplet pairing in the two-band case leads to the four-components wave function. Both gapless modes and those with an isotropic gap appear in the quasiparticle spectrum. A striking analogy with the Dirac equation is briefly explored. This type of pairing is relevant to relativistic fermions as well, since it reflects the fundamental discrete symmetry-particle interchange. A comparison with the local interband spin-singlet pairing is also made.
We characterize the coexistence of itinerant ferromagnetism and spin-triplet superconductivity within a single mechanism involving local (Hunds rule) exchange among $d$ electrons. The ratio of transition temperatures and the spin anisotropy of the su
We discuss general implications of the local spin-triplet pairing among correlated fermions that is induced by the Hunds rule coupling in orbitally degenerate systems. The quasiparticle energies, the magnetic moment, and the superconducting gap are d
Ferromagnetiam and superconductivity in a two-dimensional triangular-lattice Hubbard model are studied using the density-matrix renormalization group method. We propose a mechanism of the {it f}-wave spin-triplet pairing derived from the three-site c
We propose a microscopical theory of superconductivity in CuO$_2$ layer within the effective two-band Hubbard model in the strong correlation limit. By applying a projection technique for the matrix Green function in terms of the Hubbard operators, t
In a Kondo lattice system, suppression of effective Kondo coupling leads to the breakdown of the heavy-electron metal and a change in the electronic structure. Spin triplet superconductivity in the Kondo lattice UTe2 appears to be associated with spi