ترغب بنشر مسار تعليمي؟ اضغط هنا

Large magnetoresistance using hybrid spin filter devices

86   0   0.0 ( 0 )
 نشر من قبل Patrick R. LeClair
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A magnetic spin filter tunnel barrier, sandwiched between a non-magnetic metal and a magnetic metal, is used to create a new magnetoresistive tunnel device, somewhat analogous to an optical polarizer-analyzer configuration. The resistance of these trilayer structures depends on the relative magnetization orientation of the spin filter and the ferromagnetic electrode. The spin filtering in this configuration yields a previously unobserved magnetoresistance effect, exceeding 100%.



قيم البحث

اقرأ أيضاً

Following the recent discovery of large magnetoresistance at room temperature in polyfluorence sandwich devices, we have performed a comprehensive magnetoresistance study on a set of organic semiconductor sandwich devices made from different pi-conju gated polymers and small molecules. The measurements were performed at different temperatures, ranging from 10K to 300K, and at magnetic fields, $B < 100mT$. We observed large negative or positive magnetoresistance (up to 10% at 300K and 10mT) depending on material and device operating conditions. We compare the results obtained in devices made from different materials with the goal of providing a comprehensive picture of the experimental data. We discuss our results in the framework of known magnetoresistance mechanisms and find that none of the existing models can explain our results.
We report on the discovery of a large, room temperature magnetoresistance (MR) effect in polyfluorene sandwich devices in weak magnetic fields. We characterize this effect and discuss its dependence on voltage, temperature, film thickness, electrode materials, and (unintentional) impurity concentration. We usually observed negative MR, but positive MR can also be achieved under high applied electric fields. The MR effect reaches up to 10% at fields of 10mT at room temperature. The effect shows only a weak temperature dependence and is independent of the sign and direction of the magnetic field. We find that the effect is related to the hole current in the devices.
Efficient electron-refrigeration based on a normal-metal/spin-filter/superconductor junction is proposed and demonstrated theoretically. The spin-filtering effect leads to values of the cooling power much higher than in conventional normal-metal/nonm agnetic-insulator/superconductor coolers and allows for an efficient extraction of heat from the normal metal. We demonstrate that highly efficient cooling can be realized in both ballistic and diffusive multi-channel junctions in which the reduction of the electron temperature from 300 mK to around 50 mK can be achieved. Our results indicate the practical usefulness of spin-filters for efficiently cooling detectors, sensors, and quantum devices.
We investigate the spin Hall magnetoresistance (SMR) at room temperature in thin film heterostructures of antiferromagnetic, insulating, (0001)-oriented alpha-Fe2O3 (hematite) and Pt. We measure their longitudinal and transverse resistivities while r otating an applied magnetic field of up to 17T in three orthogonal planes. For out-of-plane magnetotransport measurements, we find indications for a multidomain antiferromagnetic configuration whenever the field is aligned along the film normal. For in-plane field rotations, we clearly observe a sinusoidal resistivity oscillation characteristic for the SMR due to a coherent rotation of the Neel vector. The maximum SMR amplitude of 0.25% is, surprisingly, twice as high as for prototypical ferrimagnetic Y3Fe5O12/Pt heterostructures. The SMR effect saturates at much smaller magnetic fields than in comparable antiferromagnets, making the alpha-Fe2O3/Pt system particularly interesting for room-temperature antiferromagnetic spintronic applications.
232 - Dali Sun , Mei Fang , Xiaoshan Xu 2013
Organic spintronic devices have been appealing because of the long spin life time of the charge carriers in the organic materials and their low cost, flexibility and chemical diversity. In previous studies, the control of resistance of organic spin v alves is generally achieved by the alignment of the magnetization directions of the two ferromagnetic electrodes, generating magnetoresistance.1 Here we employ a new knob to tune the resistance of organic spin valves by adding a thin ferroelectric interfacial layer between the ferromagnetic electrode and the organic spacer. We show that the resistance can be controlled by not only the spin alignment of the two ferromagnetic electrodes, but also by the electric polarization of the interfacial ferroelectric layer: the MR of the spin valve depends strongly on the history of the bias voltage which is correlated with the polarization of the ferroelectric layer; the MR even changes sign when the electric polarization of the ferroelectric layer is reversed. This new tunability can be understood in terms of the change of relative energy level alignment between ferromagnetic electrode and the organic spacer caused by the electric dipole moment of the ferroelectric layer. These findings enable active control of resistance using both electric and magnetic fields, opening up possibility for multi-state organic spin valves and shed light on the mechanism of the spin transport in organic spin valves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا