ﻻ يوجد ملخص باللغة العربية
We study the effect of a strong electric field on the fluctuation conductivity within the time-dependent Ginzburg-Landau theory for the case of arbitrary dimension. Our results are based on the analytical derivation of the velocity distribution law for the fluctuation Cooper pairs, from the Boltzmann equation. Special attention is drawn to the case of small nonlinearity of conductivity, which can be investigated experimentally. We obtain a general relation between the nonlinear conductivity and the temperature derivative of the linear Aslamazov-Larkin conductivity, applicable to any superconductor. For the important case of layered superconductors we derive an analogous relation between the small nonlinear correction for the conductivity and the fluctuational magnetoconductivity. On the basis of these relations we provide new experimental methods for determining both the lifetime constant of metastable Cooper pairs above T_c and the coherence length. A systematic investigation of the 3rd harmonic of the electric field generated by a harmonic current can serve as an alternative method for the examination of the metastable Cooper-pair relaxation time.
Effects of strong electric fields on hopping conductivity are studied theoretically. Monte-Carlo computer simulations show that the analytical theory of Nguyen and Shklovskii [Solid State Commun. 38, 99 (1981)] provides an accurate description of hop
We develop a theory of conductivity of type-II superconductors in the flux flow regime taking into account random spatial fluctuations of the system parameters, such as the gap magnitude $Delta$(r) and the diffusion coefficient D(r). We find a contri
A theory of dissipative nonlinear conductivity, $sigma_1(omega,H)$, of s-wave superconductors under strong electromagnetic fields at low temperatures is proposed. Closed-form expressions for $sigma_1(H)$ and the surface resistance $R_s(omega,H)$ are
Fluctuations around an antiferromagnetic quantum critical point (QCP) are believed to lead to unconventional superconductivity and in some cases to high-temperature superconductivity. However, the exact mechanism by which this occurs remains poorly u
We study the phase transition between the normal and non-uniform (Fulde-Ferrell-Larkin-Ovchinnikov) superconducting state in quasi two-dimensional d-wave superconductors at finite temperature. We obtain an appropriate Ginzburg-Landau theory for this