ترغب بنشر مسار تعليمي؟ اضغط هنا

Deciphering the folding kinetics of transmembrane helical proteins

248   0   0.0 ( 0 )
 نشر من قبل Enzo Orlandini
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nearly a quarter of genomic sequences and almost half of all receptors that are likely to be targets for drug design are integral membrane proteins. Understanding the detailed mechanisms of the folding of membrane proteins is a largely unsolved, key problem in structural biology. Here, we introduce a general model and use computer simulations to study the equilibrium properties and the folding kinetics of a $C_{alpha}$-based two helix bundle fragment (comprised of 66 amino-acids) of Bacteriorhodopsin. Various intermediates are identified and their free energy are calculated toghether with the free energy barrier between them. In 40% of folding trajectories, the folding rate is considerably increased by the presence of non-obligatory intermediates acting as traps. In all cases, a substantial portion of the helices is rapidly formed. This initial stage is followed by a long period of consolidation of the helices accompanied by their correct packing within the membrane. Our results provide the framework for understanding the variety of folding pathways of helical transmembrane proteins.



قيم البحث

اقرأ أيضاً

Protein aggregation in cell membrane is vital for the majority of biological functions. Recent experimental results suggest that transmembrane domains of proteins such as $alpha$-helices and $beta$-sheets have different structural rigidities. We use molecular dynamics simulation of a coarse-grained model of protein-embedded lipid membranes to investigate the mechanisms of protein clustering. For a variety of protein concentrations, our simulations under thermal equilibrium conditions reveal that the structural rigidity of transmembrane domains dramatically affects interactions and changes the shape of the cluster. We have observed stable large aggregates even in the absence of hydrophobic mismatch which has been previously proposed as the mechanism of protein aggregation. According to our results, semi-flexible proteins aggregate to form two-dimensional clusters while rigid proteins, by contrast, form one-dimensional string-like structures. By assuming two probable scenarios for the formation of a two-dimensional triangular structure, we calculate the lipid density around protein clusters and find that the difference in lipid distribution around rigid and semiflexible proteins determines the one- or two-dimensional nature of aggregates. It is found that lipids move faster around semiflexible proteins than rigid ones. The aggregation mechanism suggested in this paper can be tested by current state-of-the-art experimental facilities.
97 - V.V. Nesterenko , A. Feoli , 2003
The free energy of globular protein chain is considered to be a functional defined on smooth curves in three dimensional Euclidean space. From the requirement of geometrical invariance, together with basic facts on conformation of helical proteins an d dynamical characteristics of the protein chains, we are able to determine, in a unique way, the exact form of the free energy functional. Namely, the free energy density should be a linear function of the curvature of curves on which the free energy functional is defined. This model can be used, for example, in Monte Carlo simulations of exhaustive searching the native stable state of the protein chain.
We have investigated the relaxational dynamics for a protein model at various temperatures. Theoretical analysis of this model in conjunction with numerical simulations suggests several relaxation regimes, including a single exponential, a power law and a logarithmic time dependence. Even though a stretched exponential form gives a good fit to the simulation results in the crossover regime between a single exponential and a power law decay, we have not been able to directly deduce this form from the theoretical analysis.
We carry out a coarse-grained molecular dynamics simulation of phospholipid vesicles with transmembrane proteins. We measure the mean and Gaussian curvatures of our protein-embedded vesicles and quantitatively show how protein clusters change the sha pes of their host vesicles. The effects of depletion force and vesiculation on protein clustering are also investigated. By increasing the protein concentration, clusters are fragmented to smaller bundles, which are then redistributed to form more symmetric structures corresponding to lower bending energies. Big clusters and highly aspherical vesicles cannot be formed when the fraction of protein to lipid molecules is large.
We construct a minimalist model of RNA secondary-structure formation and use it to study the mapping from sequence to structure. There are strong, qualitative differences between two-letter and four or six-letter alphabets. With only two kinds of bas es, there are many alternate folding configurations, yielding thermodynamically stable ground-states only for a small set of structures of high designability, i.e., total number of associated sequences. In contrast, sequences made from four bases, as found in nature, or six bases have far fewer competing folding configurations, resulting in a much greater average stability of the ground state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا