ﻻ يوجد ملخص باللغة العربية
Protein aggregation in cell membrane is vital for the majority of biological functions. Recent experimental results suggest that transmembrane domains of proteins such as $alpha$-helices and $beta$-sheets have different structural rigidities. We use molecular dynamics simulation of a coarse-grained model of protein-embedded lipid membranes to investigate the mechanisms of protein clustering. For a variety of protein concentrations, our simulations under thermal equilibrium conditions reveal that the structural rigidity of transmembrane domains dramatically affects interactions and changes the shape of the cluster. We have observed stable large aggregates even in the absence of hydrophobic mismatch which has been previously proposed as the mechanism of protein aggregation. According to our results, semi-flexible proteins aggregate to form two-dimensional clusters while rigid proteins, by contrast, form one-dimensional string-like structures. By assuming two probable scenarios for the formation of a two-dimensional triangular structure, we calculate the lipid density around protein clusters and find that the difference in lipid distribution around rigid and semiflexible proteins determines the one- or two-dimensional nature of aggregates. It is found that lipids move faster around semiflexible proteins than rigid ones. The aggregation mechanism suggested in this paper can be tested by current state-of-the-art experimental facilities.
Nearly a quarter of genomic sequences and almost half of all receptors that are likely to be targets for drug design are integral membrane proteins. Understanding the detailed mechanisms of the folding of membrane proteins is a largely unsolved, key
External forces acting on a microswimmer can feed back on its self-propulsion mechanism. We discuss this load response for a generic microswimmer that swims by cyclic shape changes. We show that the change in cycle frequency is proportional to the Li
We use coarse grained molecular dynamics simulations to investigate diffusion properties of sheared lipid membranes with embedded transmembrane proteins. In membranes without proteins, we find normal in-plane diffusion of lipids in all flow condition
Cytoskeletal motor proteins are involved in major intracellular transport processes which are vital for maintaining appropriate cellular function. The motor exhibits distinct states of motility: active motion along filaments, and effectively stationa
We study the space of all compact structures on a two-dimensional square lattice of size $N=6times6$. Each structure is mapped onto a vector in $N$-dimensions according to a hydrophobic model. Previous work has shown that the designabilities of struc