ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong quantum fluctuation of vortices in the new superconductor $MgB_2$

126   0   0.0 ( 0 )
 نشر من قبل Hai-Hu Wen
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By using transport and magnetic measurement, the upper critical field $H_{c2}(T)$ and the irreversibility line $H_{irr}(T)$ has been determined. A big separation between $H_{c2}(0)$ and $H_{irr}(0)$ has been found showing the existence of a quantum vortex liquid state induced by quantum fluctuation of vortices in the new superconductor $MgB_2$. Further investigation on the magnetic relaxation shows that both the quantum tunneling and the thermally activated flux creep weakly depends on temperature. But when the melting field $H_{irr}$ is approached, a drastic rising of the relaxation rate is observed. This may imply that the melting of the vortex matter at a finite temperature is also induced by the quantum fluctuation of vortices.



قيم البحث

اقرأ أيضاً

65 - S. L. Li , H. H. Wen , Z. W. Zhao 2001
The lower critical field $H_{c1}$ has been carefully measured on a well shaped cylindrical sample of the new superconductor $MgB_2$ fabricated by high pressure synthesis. The penetration depth $lambda$ is calculated from the $H_{c1}$ data. It is foun d that a linear relation of $H_{c1}(T)$ appears in whole temperature region below $T_c$. Furthermore a finite slope of $dH_{c1}/dT$ and $dlambda(T)/dT$ remains down to the lowest temperature (2 K). These are inconsistent with the expectation for a widely thought s-wave superconductivity in $MgB_2$.
89 - A.Shibata , M.Matsumoto , K.Izawa 2003
The flux flow resistivity associated with purely viscous motion of vortices in high-quality MgB_2 was measured by microwave surface impedance. Flux flow resistivity exhibits unusual field dependence with strong enhancement at low field, which is mark edly different to conventional s-wave superconductors. A crossover field which separates two distinct flux flow regimes having different flux flow resistivity slopes was clearly observed in H//ab-plane. The unusual H-dependence indicates that two very differently sized superconducting gaps in MgB_2 manifest in the vortex dynamics and almost equally contribute to energy dissipation. The carrier scattering rate in two different bands is also discussed with the present results, compared to heat capacity and thermal conductivity results.
101 - A. Handstein , D. Hinz , G. Fuchs 2001
Bulk textured MgB_2 material of nearly full density showing a weak c-axis alignment of the hexagonal MgB_2 grains parallel to the pressure direction was obtained by hot deformation of a stoichiometric MgB_2 pellet prepared by a gas-solid reaction. Th e texture of the material was verified by comparing the x-ray diffraction patterns of the hot deformed material with isotropic MgB_2 powder. A small, but distinct anisotropy of the upper critical field up to Hc2^{a,b}/Hc2^{c}~1.2 depending on degree of texture was found by resistance and susceptibility measurements. No anisotropy of the critical current density determined from magnetization measurements was found for the textured material.
67 - E. Olive , J.C. Soret 2005
We present numerical simulation results of driven vortex lattices in presence of random disorder at zero temperature. We show that the plastic dynamics is readily understood in the framework of chaos theory. Intermittency routes to chaos have been cl early identified, and positive Lyapunov exponents and broad-band noise, both characteristic of chaos, are found to coincide with the differential resistance peak. Furthermore, the fractal dimension of the strange attractor reveals that the chaotic dynamics of vortices is low-dimensional.
116 - S. X. Dou , A. V. Pan , S. Zhou 2002
By doping MgB_2 superconductor with SiC nano-particles, we have successfully introduced pinning sites directly into the crystal lattice of MgB_2 grains (intra-grain pinning). It became possible due to the combination of counter-balanced Si and C co-s ubstitution for B, leading to a large number of intra-granular dislocations and the dispersed nano-size impurities induced by the substitution. The magnetic field dependence of the critical current density was significantly improved in a wide temperature range, whereas the transition temperature in the sample MgB_2(SiC)_x having x = 0.34, the highest doping level prepared, dropped only by 2.6 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا