ﻻ يوجد ملخص باللغة العربية
In the present paper we overview our recent results on intrinsic frictional properties of adsorbed monolayers, composed of mobile hard-core particles undergoing continuous exchanges with a vapor phase. Within the framework of a dynamical master equation approach, describing the time evolution of the system, we determine in the most general form the terminal velocity of some biased impure molecule - the tracer particle (TP), constrained to move inside the adsorbed monolayer probing its frictional properties, define the frictional forces as well as the particles density distribution in the monolayer. Results for one-dimensional solid substrates, appropriate to adsorbtion on polymer chains, are compared against the Monte Carlo simulation data, which confirms our analytical predictions.
We overview recent results on intrinsic frictional properties of adsorbed monolayers, composed of mobile hard-core particles undergoing continuous exchanges with a vapor phase. In terms of a dynamical master equation approach we determine the velocit
The interplay between Coulomb friction and random excitations is studied experimentally by means of a rotating probe in contact with a stationary granular gas. The granular material is independently fluidized by a vertical shaker, acting as a heat ba
We analyze an advanced two-spring model with an ultra-low effective tip mass to predict nontrivial and physically rich fine structure in the atomic stick-slip motion in Friction Force Microscopy (FFM) experiments. We demonstrate that this fine struct
Using cyclic shear to drive a two dimensional granular system, we determine the structural characteristics for different inter-particle friction coefficients. These characteristics are the result of a competition between mechanical stability and entr
The way granular materials response to an applied shear stress is of the utmost relevance to both human activities and natural environment. One of the their most intriguing and less understood behavior, is the stick-instability, whose most dramatic m