ﻻ يوجد ملخص باللغة العربية
A transport current distribution over a wide superconducting sheet is shown to strongly change in a presence of bulk magnetic screens of a soft magnet with a high permeability. Depending on the geometry, the effect may drastically suppress or protect the Meissner state of the sheet through the enhancement or suppression of the edge barrier critical current. The total transport current in the magnetically screened Meissner state is expected to compete with the critical current of the flux-filled sheet only for samples whose critical current is initially essentially controlled by the edge barrier effect.
Recent theoretical and experimental research on low-bulk-pinning superconducting strips has revealed striking dome-like magnetic-field distributions due to geometrical edge barriers. The observed magnetic-flux profiles differ strongly from those in s
The critical current of a thin superconducting strip of width $W$ much larger than the Ginzburg-Landau coherence length $xi$ but much smaller than the Pearl length $Lambda = 2 lambda^2/d$ is maximized when the strip is straight with defect-free edges
Analytic expressions for alternating current (ac) loss in radially arranged superconducting strips are presented. We adopt the weight-function approach to obtain the field distributions in the critical state model, and we have developed an analytic m
A simple analytical expression is presented for hysteretic ac loss $Q$ of a superconducting strip simultaneously exposed to an ac transport current $I_0cosomega t$ and a phase-different ac magnetic field $H_0cos(omega t+theta_0)$. On the basis of Bea
We experimentally study effect of single circular hole on the critical current $I_c$ of narrow superconducting strip with width $W$ much smaller than Pearl penetration depth $Lambda$. We found nonmonotonous dependence of $I_c$ on the location of a ho