ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of harmonic generation and nonlinear coupling in the collective dynamics of a Bose condensate

106   0   0.0 ( 0 )
 نشر من قبل Onofrio Marago'
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the observation of harmonic generation and strong nonlinear coupling of two collective modes of a condensed gas of rubidium atoms. Using a modified TOP trap we changed the trap anisotropy to a value where the frequency of the m=0 high-lying mode corresponds to twice the frequency of the m=0 low-lying mode, thus leading to strong nonlinear coupling between these modes. By changing the anisotropy of the trap and exciting the low-lying mode we observed significant frequency shifts of this fundamental mode and also the generation of its second harmonic.



قيم البحث

اقرأ أيضاً

We observed the expansion of vortex-free Bose-condensates after their sudden release from a slowly rotating anisotropic trap. Our results show clear experimental evidence of the irrotational flow expected for a superfluid. The expansion from a rotati ng trap has strong features associated with the superfluid nature of a Bose-condensate, namely that the condensate cannot at any point be cylindrically symmetric with respect to the axis of rotation since such a wavefunction cannot possess angular momentum. Consequently, an initially rotating condensate expands in a distinctively different way to one released from a static trap. We report measurements of this phenomenon in absorption images of the condensate taken along the direction of the rotation axis.
We show that the dynamic structure factor of a one-dimensional Bose liquid has a power-law singularity defining the main mode of collective excitations. Using the Lieb-Liniger model, we evaluate the corresponding exponent as a function of the wave vector and the interaction strength.
We report on the observation of vortex formation in a Bose-Einstein condensate of Rb-87 atoms. Vortices are generated by superimposing an oscillating excitation to the trapping potential introduced by an external magnetic field. For small amplitudes of the external excitation field we observe a bending of the cloud axis. Increasing the amplitude we observe formation of a growing number of vortices in the sample. Shot-to-shot variations in both vortex number and position within the condensed cloud are observed, probably due to the intrinsic vortex nucleation dynamics. We discuss the possible formation of vortices and anti-vortices in the sample as well as possible mechanisms for vortex nucleation.
381 - Li Chen , Han Pu , Zeng-Qiang Yu 2017
We investigate the collective excitations of a Raman-induced spin-orbit coupled Bose-Einstein condensate confined in a quasi one-dimension harmonic trap using the Bogoliubov method. By tuning the Raman coupling strength, three phases of the system ca n be identified. By calculating the transition strength, we are able to classify various excitation modes that are experimentally relevant. We show that the three quantum phases possess distinct features in their collective excitation properties. In particular, the spin dipole and the spin breathing modes can be used to clearly map out the phase boundaries. We confirm these predictions by direct numerical simulations of the quench dynamics that excites the relevant collective modes.
We investigate second harmonic generation (SHG) from hexagonal periodic arrays of triangular nano-holes of aluminum using a self-consistent methodology based on the hydrodynamics-Maxwell-Bloch approach. It is shown that angular polarization patterns of the far-field second harmonic response abide to three-fold symmetry constraints on tensors. When a molecular layer is added to the system and its parameters are adjusted to achieve the strong coupling regime between a localized plasmon mode and molecular excitons, Rabi splitting is observed from occurrence of both single- and two-photon transition peaks within the SHG power spectrum. It is argued that the splitting observed for both transitions results from direct transitions between lower and upper polaritonic states of the strongly coupled system. This interpretation can be accounted by a tailored three-level quantum model, with results in agreement with the unbiased numerical approach. Our results suggest the hybrid states formed in strongly coupled systems directly contribute to the nonlinear dynamics. This opens new directions in designing THz sources and nonlinear frequency converters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا