ﻻ يوجد ملخص باللغة العربية
Nominalization is a highly productive phenomena in most languages. The process of nominalization ejects a verb from its syntactic role into a nominal position. The original verb is often replaced by a semantically emptied support verb (e.g., make a proposal). The choice of a support verb for a given nominalization is unpredictable, causing a problem for language learners as well as for natural language processing systems. We present here a method of discovering support verbs from an untagged corpus via low-level syntactic processing and comparison of arguments attached to verbal forms and potential nominalized forms. The result of the process is a list of potential support verbs for the nominalized form of a given predicate.
Automatic speech recognition (ASR) via call is essential for various applications, including AI for contact center (AICC) services. Despite the advancement of ASR, however, most publicly available call-based speech corpora such as Switchboard are old
A key problem in multi-task learning (MTL) research is how to select high-quality auxiliary tasks automatically. This paper presents GradTS, an automatic auxiliary task selection method based on gradient calculation in Transformer-based models. Compa
Huge amounts of digital videos are being produced and broadcast every day, leading to giant media archives. Effective techniques are needed to make such data accessible further. Automatic meta-data labelling of broadcast media is an essential task fo
The advancement of biomedical named entity recognition (BNER) and biomedical relation extraction (BRE) researches promotes the development of text mining in biological domains. As a cornerstone of BRE, robust BNER system is required to identify the m
Adpositions are frequent markers of semantic relations, but they are highly ambiguous and vary significantly from language to language. Moreover, there is a dearth of annotated corpora for investigating the cross-linguistic variation of adposition se