ﻻ يوجد ملخص باللغة العربية
Huge amounts of digital videos are being produced and broadcast every day, leading to giant media archives. Effective techniques are needed to make such data accessible further. Automatic meta-data labelling of broadcast media is an essential task for multimedia indexing, where it is standard to use multi-modal input for such purposes. This paper describes a novel method for automatic detection of media genre and show identities using acoustic features, textual features or a combination thereof. Furthermore the inclusion of available meta-data, such as time of broadcast, is shown to lead to very high performance. Latent Dirichlet Allocation is used to model both acoustics and text, yielding fixed dimensional representations of media recordings that can then be used in Support Vector Machines based classification. Experiments are conducted on more than 1200 hours of TV broadcasts from the British Broadcasting Corporation (BBC), where the task is to categorise the broadcasts into 8 genres or 133 show identities. On a 200-hour test set, accuracies of 98.6% and 85.7% were achieved for genre and show identification respectively, using a combination of acoustic and textual features with meta-data.
We describe the University of Sheffield system for participation in the 2015 Multi-Genre Broadcast (MGB) challenge task of transcribing multi-genre broadcast shows. Transcription was one of four tasks proposed in the MGB challenge, with the aim of ad
We introduce a new task, MultiMedia Event Extraction (M2E2), which aims to extract events and their arguments from multimedia documents. We develop the first benchmark and collect a dataset of 245 multimedia news articles with extensively annotated e
Multimodal Sentiment Analysis in Real-life Media (MuSe) 2020 is a Challenge-based Workshop focusing on the tasks of sentiment recognition, as well as emotion-target engagement and trustworthiness detection by means of more comprehensively integrating
The threat of online misinformation is hard to overestimate, with adversaries relying on a range of tools, from cheap fakes to sophisticated deep fakes. We are motivated by a threat scenario where an image is being used out of context to support a ce
Businesses communicate using Twitter for a variety of reasons -- to raise awareness of their brands, to market new products, to respond to community comments, and to connect with their customers and potential customers in a targeted manner. For busin