ﻻ يوجد ملخص باللغة العربية
Structures such as waves, jets, and vortices have a dramatic impact on the transport properties of a flow. Passive tracer transport in incompressible two-dimensional flows is described by Hamiltonian dynamics, and, for idealized structures, the system is typically integrable. When such structures are perturbed, chaotic trajectories can result which can significantly change the transport properties. It is proposed that the transport due to the chaotic regions can be efficiently calculated using Hamiltonian mappings designed specifically for the structure of interest. As an example a new map is constructed, appropriate for studying transport by propagating isolated vortices. It is found that a perturbed vortex will trap fluid parcels for varying lengths of time, and that the distribution of such trapping times has slopes which are independent of the amplitudes of both the vortex and the perturbation.
Chaotic transport is a subject of paramount importance in a variety of problems in plasma physics, specially those related to anomalous transport and turbulence. On the other hand, a great deal of information on chaotic transport can be obtained from
We study configurations of disjoint Lagrangian submanifolds in certain low-dimensional symplectic manifolds from the perspective of the geometry of Hamiltonian maps. We detect infinite-dimensional flats in the Hamiltonian group of the two-sphere equi
Linking thermodynamic variables like temperature $T$ and the measure of chaos, the Lyapunov exponents $lambda$, is a question of fundamental importance in many-body systems. By using nonlinear fluid equations in one and three dimensions, we prove tha
A method to predict the emergence of different kinds of ordered collective behaviors in systems of globally coupled chaotic maps is proposed. The method is based on the analogy between globally coupled maps and a map subjected to an external drive. A
Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-diffusion medium provides an example, where waves originate from a source exhibiting a back-and-forth movement in radial direction. The periodic motion of the