ﻻ يوجد ملخص باللغة العربية
We show that scale-scale correlations are a generic feature of slow-roll inflation theories. These correlations result from the long-time tails characteristic of the time dependent correlations because the long wavelength density perturbation modes are diffusion-like. A relationship between the scale-scale correlations and time-correlations is established providing a way to reveal the time correlations of the perturbations during inflation. This mechanism provides for a testable prediction that the scale-scale correlations at two different spatial points will vanish.
We estimate large-scale curvature perturbations from isocurvature fluctuations in the waterfall field during hybrid inflation, in addition to the usual inflaton field perturbations. The tachyonic instability at the end of inflation leads to an explos
How much does the curvature perturbation change after it leaves the horizon, and when should one evaluate the power spectrum? To answer these questions we study single field inflation models numerically, and compare the evolution of different curvatu
In this paper, we study small-scale fluctuations (baryon pressure sound waves) in the baryon fluid during recombination. In particular, we look at their evolution in the presence of relative velocities between baryons and photons on large scales ($k
Non-adiabatic pressure perturbations naturally occur in models of inflation consisting of more than one scalar field. The amount of non-adiabatic pressure present at the end of inflation can have observational consequences through changes in the curv
We show that the scale of the inflationary potential may be the electroweak scale or even lower, while still generating an acceptable spectrum of primordial density perturbations. Thermal effects readily lead to the initial conditions necessary for l