ﻻ يوجد ملخص باللغة العربية
In this paper, we study small-scale fluctuations (baryon pressure sound waves) in the baryon fluid during recombination. In particular, we look at their evolution in the presence of relative velocities between baryons and photons on large scales ($k sim 10^{-1} {rm Mpc}^{-1}$), which are naturally present during the era of decoupling. Previous work concluded that the fluctuations grow due to an instability of sound waves in a recombining plasma, but that the growth factor is small for typical cosmological models. These analyses model recombination in an inhomogenous universe as a perturbation to the parameters of the homogenous solution. We show that for relevant wavenumbers $kgtrsim 10^3 {rm Mpc}^{-1}$ the dynamics are significantly altered by the transport of both ionizing continuum ($h u>13.6$ eV) and Lyman-$alpha$ photons between crests and troughs of the density perturbations. We solve the radiative transfer of photons in both these frequency ranges and incorporate the results in a perturbed three-level atom model. We conclude that the instability persists at intermediate scales. We use the results to estimate a distribution of growth rates in $10^{7}$ random realizations of large-scale relative velocities. Our results indicate that there is no appreciable growth; out of these $10^7$ realizations, the maximum growth factor we find is less than $approx 1.2$ at wavenumbers of $k approx 10^{3} {rm Mpc}^{-1}$. The instabilitys low growth factors are due to the relatively short duration of the recombination epoch during which the electrons and photons are coupled.
Despite the success of the standard $Lambda$CDM model of cosmology, recent data improvements have made tensions emerge between low- and high-redshift observables, most importantly in determinations of the Hubble constant $H_0$ and the (rescaled) clus
The redshift-space distortion (RSD) in the observed distribution of galaxies is known as a powerful probe of cosmology. Observations of large-scale RSD have given tight constraints on the linear growth rate of the large-scale structures in the univer
We study the matter density fluctuations in the running cosmological constant (RCC) model using linear perturbations in the longitudinal gauge. Using this observable we calculate the growth rate of structures and the matter power spectrum, and compar
A new determination of the sound horizon scale in angular coordinates is presented. It makes use of ~ 0.6 x 10^6 Luminous Red Galaxies, selected from the Sloan Digital Sky Survey imaging data, with photometric redshifts. The analysis covers a redshif
Baryons and cold dark matter (CDM) did not comove prior to recombination. This leads to differences in the local baryon and CDM densities, the so-called baryon-CDM isocurvature perturbations $delta_{bc}$. These perturbations are usually neglected in