ﻻ يوجد ملخص باللغة العربية
The study of the chemical evolution of gas and dust from pre-stellar dense cores to circumstellar disks around young stars forms an essential part of understanding star- and planet formation. Throughout the collapse- and protostellar phases, simple and complex molecules are formed, many of which deplete onto cold grains and are eventually incorporated into the icy planetesimals of new solar systems. Tracing this chemical evolution provides a wealth of information, not only about the chemical processing in primitive solar nebulae, but also about physical processes which occur in the immediate surroundings of young stellar objects (YSOs). Here we review the chemical processes which occur in the protostellar environment, and models and observations of the chemical structure of the various stages of star formation. We briefly discuss the way in which molecular abundances are derived from observations, and conclude with two examples: the low- to intermediate mass YSOs in Serpens, and the massive YSOs in W3.
Recent radio astronomical observations have revealed that HC$_{5}$N, the second shortest cyanopolyyne (HC$_{2n+1}$N), is abundant around some massive young stellar objects (MYSOs), which is not predicted by classical carbon-chain chemistry. For examp
We present the comparison of the three most important ice constituents (water, CO and CO2) in the envelopes of massive Young Stellar Objects (YSOs), in environments of different metallicities: the Galaxy, the Large Magellanic Cloud (LMC) and, for the
We present infrared observations of four young stellar objects using the Palomar Testbed Interferometer (PTI). For three of the sources, T Tau, MWC 147 and SU Aur, the 2.2 micron emission is resolved at PTIs nominal fringe spacing of 4 milliarcsec (m
We present spectroscopic observations of a sample of 15 embedded young stellar objects (YSOs) in the Large Magellanic Cloud (LMC). These observations were obtained with the Spitzer Infrared Spectrograph (IRS) as part of the SAGE-Spec Legacy program.
Near-infrared H- and K-band spectra are presented for 247 objects, selected from the Red MSX Source (RMS) survey as potential young stellar objects (YSOs). 195 (~80%) of the targets are YSOs, of which 131 are massive YSOs (L_BOL > 5x10^3 L_solar), M