ترغب بنشر مسار تعليمي؟ اضغط هنا

Ice chemistry in massive Young Stellar Objects: the role of metallicity

150   0   0.0 ( 0 )
 نشر من قبل J. M. Oliveira
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J.M. Oliveira




اسأل ChatGPT حول البحث

We present the comparison of the three most important ice constituents (water, CO and CO2) in the envelopes of massive Young Stellar Objects (YSOs), in environments of different metallicities: the Galaxy, the Large Magellanic Cloud (LMC) and, for the first time, the Small Magellanic Cloud (SMC). We present observations of water, CO and CO2 ice in 4 SMC and 3 LMC YSOs (obtained with Spitzer-IRS and VLT/ISAAC). While water and CO2 ice are detected in all Magellanic YSOs, CO ice is not detected in the SMC objects. Both CO and CO2 ice abundances are enhanced in the LMC when compared to high-luminosity Galactic YSOs. Based on the fact that both species appear to be enhanced in a consistent way, this effect is unlikely to be the result of enhanced CO2 production in hotter YSO envelopes as previously thought. Instead we propose that this results from a reduced water column density in the envelopes of LMC YSOs, a direct consequence of both the stronger UV radiation field and the reduced dust-to-gas ratio at lower metallicity. In the SMC the environmental conditions are harsher, and we observe a reduction in CO2 column density. Furthermore, the low gas-phase CO density and higher dust temperature in YSO envelopes in the SMC seem to inhibit CO freeze-out. The scenario we propose can be tested with further observations.



قيم البحث

اقرأ أيضاً

491 - J.M. Oliveira 2009
We present spectroscopic observations of a sample of 15 embedded young stellar objects (YSOs) in the Large Magellanic Cloud (LMC). These observations were obtained with the Spitzer Infrared Spectrograph (IRS) as part of the SAGE-Spec Legacy program. We analyze the two prominent ice bands in the IRS spectral range: the bending mode of CO_2 ice at 15.2 micron and the ice band between 5 and 7 micron that includes contributions from the bending mode of water ice at 6 micron amongst other ice species. The 5-7 micron band is difficult to identify in our LMC sample due to the conspicuous presence of PAH emission superimposed onto the ice spectra. We identify water ice in the spectra of two sources; the spectrum of one of those sources also exhibits the 6.8 micron ice feature attributed to ammonium and methanol. We model the CO_2 band in detail, using the combination of laboratory ice profiles available in the literature. We find that a significant fraction (> 50%) of CO_2 ice is locked in a water-rich component, consistent with what is observed for Galactic sources. The majority of the sources in the LMC also require a pure-CO_2 contribution to the ice profile, evidence of thermal processing. There is a suggestion that CO_2 production might be enhanced in the LMC, but the size of the available sample precludes firmer conclusions. We place our results in the context of the star formation environment in the LMC.
Recent radio astronomical observations have revealed that HC$_{5}$N, the second shortest cyanopolyyne (HC$_{2n+1}$N), is abundant around some massive young stellar objects (MYSOs), which is not predicted by classical carbon-chain chemistry. For examp le, the observed HC$_{5}$N abundance toward the G28.28$-$0.36 MYSO is higher than that in L1527, which is one of the warm carbon chain chemistry (WCCC) sources, by more than one order of magnitude (Taniguchi et al., 2017). In this paper, we present chemical simulations of hot-core models with a warm-up period using the astrochemical code Nautilus. We find that the cyanopolyynes are formed initially in the gas phase and accreted onto the bulk and surface of granular ice mantles during the lukewarm phase, which occurs at $25 < T < 100$ K. In slow warm-up period models, the peak abundances occur as the cyanopolyynes desorb from dust grains after the temperature rises above 100 K. The lower limits of the abundances of HC$_{5}$N, CH$_{3}$CCH, and CH$_{3}$OH observed in the G28.28$-$0.36 MYSO can be reproduced in our hot-core models, after their desorption from dust grains. Moreover, previous observations suggested chemical diversity in envelopes around different MYSOs. We discuss possible interpretations of relationships between stages of the star-formation process and such chemical diversity, such as the different warm-up timescales. This timescale depends not only on the mass of central stars but also on the relationship between the size of warm regions and their infall velocity.
79 - Meyer D. M.-A. 2018
Episodic accretion-driven outbursts are an extreme manifestation of accretion variability. It has been proposed that the development of gravitational instabilities in the proto-circumstellar medium of massive young stellar objects (MYSOs) can lead to such luminous bursts, when clumps of fragmented accretion discs migrate onto the star. We simulate the early evolution of MYSOs formed by the gravitational collapse of rotating 100 M pre-stellar cores and analyze the characteristics of the bursts that episodically accompany their strongly time-variable protostellar lightcurve. We predict that MYSOs spend ~ 10^3 yr (~ 1.7%) of their modelled early 60 kyr experiencing eruptive phases, during which the peak luminosity exceeds the quiescent pre-burst values by factors from 2.5 to more than 40. Throughout these short time periods, they can acquire a substential fraction (up to ~ 50 %) of their zero-age-main sequence mass. Our findings show that fainter bursts are more common than brighter ones. We discuss our results in the context of the known bursting MYSOs, e.g. NGC6334I-MM1 and S255IR-NIRS3, and propose that these monitored bursts are part of a long-time ongoing series of eruptions, which might, in the future, be followed by other luminous flares.
We discuss VLTI AMBER and MIDI interferometry in addition to single-dish Subaru observations of massive young stellar objects. The observations probe linear size scales between 10 to 1000 AU for the average distance of our sources.
The VVV survey has allowed for an unprecedented number of multi-epoch observations of the southern Galactic plane. In a recent paper,13 massive young stellar objects(MYSOs) have already been identified within the highly variable(Delta Ks > 1 mag) YSO sample of another published work.This study aims to understand the general nature of variability in MYSOs.We present the first systematic study of variability in a large sample of candidate MYSOs.We examined the data for variability of the putative driving sources of all known Spitzer EGOs and bright 24 mu m sources coinciding with the peak of 870 mu m detected ATLASGAL clumps, a total of 718 targets. Of these, 190 point sources (139 EGOs and 51 non-EGOs) displayed variability (IQR > 0.05, Delta Ks > 0.15 mag). Light-curves(LCs) have been sub-classified into eruptive, dipper, fader, short-term-variable and long-period variable-YSO categories.Lomb-Scargle periodogram analysis of periodic LCs was carried out. 1 - 870 mu m spectral energy distributions of the variable sources were fitted with YSO models to obtain representative properties. 41% of the variable sources are represented by > 4Msun objects, and only 6% by > 8Msun objects.The highest-mass objects are mostly non-EGOs,deeply embedded.By placing them on the HR diagram we show that most lower mass,EGO type objects are concentrated on the putative birth-line position, while the luminous non-EGO type objects group around the ZAMS track.Some of the most luminous far infrared sources in the massive clumps and infrared quiet driving sources of EGOs have been missed out by this study owing to an uniform sample selection method.A high rate of detectable variability in EGO targets (139 out of 153 searched) implies that near-infrared variability in MYSOs is closely linked to the accretion phenomenon and outflow activity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا