ترغب بنشر مسار تعليمي؟ اضغط هنا

Ion injection and acceleration at modified shocks

99   0   0.0 ( 0 )
 نشر من قبل Udo Gieseler
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف U.D.J. Gieseler




اسأل ChatGPT حول البحث

The theory of diffusive particle acceleration explains the spectral properties of the cosmic rays below energies of approx. 10^6 GeV as produced at strong shocks in supernova remnants (SNRs). To supply the observed flux of cosmic rays, a significant fraction of the energy released by a supernova has to be transfered to cosmic rays. The key to the question of the efficiency of SNRs in producing cosmic rays is the injection process from thermal energies. A self-consistent model has to take into account the interaction of the accelerated particles with magneto-hydrodynamic waves, which generate the particle diffusion, a requisite for the acceleration process. Such a nonlinear model of the turbulent background plasma has been developed recently (Malkov, 1998, Phys. Rev. E 58, 4911). We use this model for the first numerical treatment of the gas dynamics and the diffusion-convection equation at a quasi-parallel strong shock, which incorporates a plasma-physical injection model to investigate the cosmic ray production.



قيم البحث

اقرأ أيضاً

The non-linear back reaction of accelerated cosmic rays at the shock fronts, leads to the formation of a smooth precursor with a length scale corresponding to the diffusive scale of the energetic particles. Past works claimed that shocklets could be created in the precursor region of a specific shock width, which might energize few thermal particles to sufficient acceleration and furthermore this precursor region may act as confining large angle scatterer for very high energy cosmic rays. On the other hand, it has been shown that the smoothing of the shock front could lower the acceleration efficiency. These controversies motivated us to investigate numerically by Monte Carlo simulations the particle acceleration efficiency in oblique modified shocks. The results show flatter spectra compared to the spectra of the pressumed sharp discontinuity shock fronts. The findings are in accordance with theoretical predictions, since the scattering inside the precursor confines high energy particles to further scattering, resulting in higher energies making the whole acceleration process more efficient.
65 - Ji-Hoon Ha 2018
Collisionless shocks with low sonic Mach numbers, $M_{rm s} lesssim 4$, are expected to accelerate cosmic ray (CR) protons via diffusive shock acceleration (DSA) in the intracluster medium (ICM). However, observational evidence for CR protons in the ICM has yet to be established. Performing particle-in-cell simulations, we study the injection of protons into DSA and the early development of a nonthermal particle population in weak shocks in high $beta$ ($approx 100$) plasmas. Reflection of incident protons, self-excitation of plasma waves via CR-driven instabilities, and multiple cycles of shock drift acceleration are essential to the early acceleration of CR protons in supercritical quasi-parallel shocks. We find that only in ICM shocks with $M_{rm s} gtrsim M_{rm s}^*approx 2.25$, a sufficient fraction of incoming protons are reflected by the overshoot in the shock electric potential and magnetic mirror at locally perpendicular magnetic fields, leading to efficient excitation of magnetic waves via CR streaming instabilities and the injection into the DSA process. Since a significant fraction of ICM shocks have $M_{rm s} < M_{rm s}^*$, CR proton acceleration in the ICM might be less efficient than previously expected. This may explain why the diffuse gamma-ray emission from galaxy clusters due to proton-proton collisions has not been detected so far.
An analytic solution describing an ion-acoustic collisionless shock, self-consistently with the evolution of shock-reflected ions, is obtained. The solution extends the classic soliton solution beyond a critical Mach number, where the soliton ceases to exist because of the upstream ion reflection. The reflection transforms the soliton into a shock with a trailing wave and a foot populated by the reflected ions. The solution relates parameters of the entire shock structure, such as the maximum and minimum of the potential in the trailing wave, the height of the foot, as well as the shock Mach number, to the number of reflected ions. This relation is resolvable for any given distribution of the upstream ions. In this paper, we have resolved it for a simple box distribution. Two separate models of electron interaction with the shock are considered. The first model corresponds to the standard Boltzmannian electron distribution in which case the critical shock Mach number only insignificantly increases from M=1.6 (no ion reflection) to M=1.8 (substantial reflection). The second model corresponds to adiabatically trapped electrons. They produce a stronger increase, from M=3.1 to M=4.5. The shock foot that is supported by the reflected ions also accelerates them somewhat further. A self-similar foot expansion into the upstream medium is also described analytically.
The existence and properties of low Mach-number ($M gtrsim 1$) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. Using this semi-analytical model, we study the effect of electron-to-ion temperature ratio and presence of impurities on both the maximum shock potential and Mach number. We find that even a small amount of impurities can influence the shock properties significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.
Particle acceleration and heating at mildly relativistic magnetized shocks in electron-ion plasma are investigated with unprecedentedly high-resolution two-dimensional particle-in-cell simulations that include ion-scale shock rippling. Electrons are super-adiabatically heated at the shock, and most of the energy transfer from protons to electrons takes place at or downstream of the shock. We are the first to demonstrate that shock rippling is crucial for the energization of electrons at the shock. They remain well below equipartition with the protons. The downstream electron spectra are approximately thermal with a limited supra-thermal power-law component. Our results are discussed in the context of wakefield acceleration and the modelling of electromagnetic radiation from blazar cores.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا