ﻻ يوجد ملخص باللغة العربية
An analytic solution describing an ion-acoustic collisionless shock, self-consistently with the evolution of shock-reflected ions, is obtained. The solution extends the classic soliton solution beyond a critical Mach number, where the soliton ceases to exist because of the upstream ion reflection. The reflection transforms the soliton into a shock with a trailing wave and a foot populated by the reflected ions. The solution relates parameters of the entire shock structure, such as the maximum and minimum of the potential in the trailing wave, the height of the foot, as well as the shock Mach number, to the number of reflected ions. This relation is resolvable for any given distribution of the upstream ions. In this paper, we have resolved it for a simple box distribution. Two separate models of electron interaction with the shock are considered. The first model corresponds to the standard Boltzmannian electron distribution in which case the critical shock Mach number only insignificantly increases from M=1.6 (no ion reflection) to M=1.8 (substantial reflection). The second model corresponds to adiabatically trapped electrons. They produce a stronger increase, from M=3.1 to M=4.5. The shock foot that is supported by the reflected ions also accelerates them somewhat further. A self-similar foot expansion into the upstream medium is also described analytically.
The nonlinear theory of two-dimensional ion-acoustic (IA) solitary waves and shocks (SWS) is revisited in a dissipative quantum plasma. The effects of dispersion, caused by the charge separation of electrons and ions and the quantum force associated
The existence and properties of low Mach-number ($M gtrsim 1$) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model
The theory of diffusive particle acceleration explains the spectral properties of the cosmic rays below energies of approx. 10^6 GeV as produced at strong shocks in supernova remnants (SNRs). To supply the observed flux of cosmic rays, a significant
Although the interaction of a flat-foil with currently available laser intensities is now considered a routine process, during the last decade emphasis is given to targets with complex geometries aiming on increasing the ion energy. This work present
Particle transport, acceleration and energisation are phenomena of major importance for both space and laboratory plasmas. Despite years of study, an accurate theoretical description of these effects is still lacking. Validating models with self-cons