ترغب بنشر مسار تعليمي؟ اضغط هنا

The swansong in context: long-timescale X-ray variability of NGC 4051

80   0   0.0 ( 0 )
 نشر من قبل Phil Uttley
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Uttley




اسأل ChatGPT حول البحث

On 9-11 May 1998, the highly-variable, low luminosity Seyfert 1 galaxy NGC4051 was observed in an unusual low flux state by BeppoSAX (Guainazzi et al. 1998) RXTE and EUVE. We present fits of the 4-15 keV RXTE spectrum and BeppoSAX MECS spectrum obtained during this observation, which are consistent with the interpretation that the source had switched off, leaving only the spectrum of pure reflection from distant cold matter. We place this result in context by showing the X-ray lightcurve of NGC4051 obtained by our RXTE monitoring campaign over the past two and a half years, which shows that the low state lasted for ~150 days before the May observations (implying that the reflecting material is > 10^17 cm from the continuum source) and forms part of a lightcurve showing distinct variations in long-term average flux over timescales > months. We show that the long-timescale component to X-ray variability is intrinsic to the primary continuum and is probably distinct from the variability at shorter timescales, possibly associated with variations in the accretion flow of matter onto the central black hole. As the source approaches the low state, the variability process becomes non-linear. NGC4051 may represent a microcosm of all X-ray variability in radio quiet active galactic nuclei (AGNs), displaying in a few years a variety of flux states and variability properties which more luminous AGNs may pass through on timescales of decades to thousands of years.



قيم البحث

اقرأ أيضاً

We present intensive quasi-simultaneous X-ray and radio monitoring of the narrow line Seyfert 1 galaxy NGC 4051, over a 16 month period in 2000-2001. Observations were made with the Rossi Timing X-ray Explorer (RXTE) and the Very Large Array (VLA) at 8.4 and 4.8 GHz. In the X-ray band NGC 4051 behaves much like a Galactic black hole binary (GBH) system in a `soft-state. In such systems, there has so far been no firm evidence for an active, radio-emitting jet like those found in `hard state GBHs. VLBI observations of NGC 4051 show three co-linear compact components. This structure resembles the core and outer hot spots seen in powerful, jet-dominated, extragalactic radio sources and suggests the existence of a weak jet. Radio monitoring of the core of NGC 4051 is complicated by the presence of surrounding extended emission and by the changing array configurations of the VLA. Only in the A configuration is the core reasonably resolved. We have carefully removed the contaminations of the core by extended emission in the various arrays. The resulting lightcurve shows no sign of large amplitude variability (i.e. factor 50 %) over the 16 month period. Within the most sensitive configuration (A array) we see marginal evidence for radio core variability of ~25% (~0.12 mJy at 8.4GHz) on a 2-week timescale, correlated with X-ray variations. Even if the radio variations in NGC 4051 are real, the percentage variability is much less than in the X-ray band. Within the B configuration observations, where sensitivity is reduced, there is no sign of correlated X-ray/radio variability. The lack of radio variability in NGC 4051, which we commonly see in `hard state GBHs, may be explained by orientation effects. Another possibility is that the radio emission arises from the X-ray corona, although the linear structure of the compact radio components here is hard to explain.
We discuss the origin of the optical variations in the Narrow line Seyfert 1 galaxy NGC 4051 and present the results of a cross-correlation study using X-ray and optical light curves spanning more than 12 years. The emission is highly variable in all wavebands, and the amplitude of the optical variations is found to be smaller than that of the X-rays, even after correcting for the contaminating host galaxy flux falling inside the photometric aperture. The optical power spectrum is best described by an unbroken power law model with slope $alpha=1.4^{+0.6}_{-0.2}$ and displays lower variability power than the 2-10 keV X-rays on all time-scales probed. We find the light curves to be significantly correlated at an optical delay of $1.2^{+1.0}_{-0.3}$ days behind the X-rays. This time-scale is consistent with the light travel time to the optical emitting region of the accretion disc, suggesting that the optical variations are driven by X-ray reprocessing. We show, however, that a model whereby the optical variations arise from reprocessing by a flat accretion disc cannot account for all the optical variability. There is also a second significant peak in the cross-correlation function, at an optical delay of $39^{+2.7}_{-8.4}$ days. The lag is consistent with the dust sublimation radius in this source, suggesting that there is a measurable amount of optical flux coming from the dust torus. We discuss the origin of the additional optical flux in terms of reprocessing of X-rays and reflection of optical light by the dust.
The powerlaw X-ray spectra of active galactic nuclei at moderate to high accretion rates normally appear softer when they brighten, for which the underlying mechanisms are yet unclear. Utilizing XMM-Newton observations and excluding photons $<$ 2 keV to avoid contamination from the soft excess, in this work we scrutinize the powerlaw spectral variability of NCG 4051 from two new aspects. We first find that a best-fit softer-when-brighter relation is statistically insufficient to explain the observed spectral variabilities, and intervals deviated from the empirical relation are clearly visible in the light curve of 2 -- 4 keV/4 -- 10 keV count rate ratio. The deviations are seen not only between but also within individual XMM-Newton exposures, consistent with random variations of the corona geometry or inner structure (with timescales as short as $sim$ 1 ks), in addition to those behind the smooth softer-when-brighter trend. We further find the softer-when-brighter trend gradually weakens with the decreasing timescale (from $sim$ 100 ks down to 0.5 ks). These findings indicate that the powerlaw spectral slope is not solely determined by its brightness. We propose a two-tier geometry, including flares/nano-flares on top of the inner disc and an embedding extended corona (heated by the flares, in analogy to solar corona) to explain the observations together with other observational clues in literature. Rapid spectral variabilities could be due to individual flares/nano-flares, while slow ones are driven by the variations in the global activity of inner disc region (akin to the variation of solar activity, but not the accretion rate) accompanied with heating/cooling and inflation/contraction of the extended corona.
128 - K.A. Pounds 2003
Archival XMM-Newton data on the nearby Seyfert galaxy NGC 4051, taken in relatively high and low flux states, offer a unique opportunity to explore the complexity of its X-ray spectrum. We find the hard X-ray band to be significantly affected by refl ection from cold matter, which can also explain a non-varying, narrow Fe K fluorescent line. We interpret major differences between the high and low flux hard X-ray spectra in terms of the varying ionisation (opacity) of a substantial column of outflowing gas. An emission line spectrum in the low flux state indicates an extended region of photoionised gas. A high velocity, highly ionised outflow seen in the high state spectrum can replenish the gas in the extended emission region over ~10^3 years, while having sufficient kinetic energy to contribute significantly to the hard X-ray continuum.
Using a month-long X-ray lightcurve from ${it RXTE}$/PCA and 1.5 month long UV continuum lightcurves from ${it IUE}$ spectra in 1220$-$1970 $r{A}$, we performed a detailed time-lag study of the Seyfert 1 galaxy NGC 7469. Our cross-correlation analysi s confirms previous results showing that the X-rays are delayed relative to the UV continuum at 1315 $r{A}$ by 3.49 $pm$ 0.22 days which is possibly caused by either propagating fluctuation or variable comptonisation. However, if variations slower than 5 days are removed from the X-ray lightcurve, the UV variations then lag behind the X-rays variations by 0.37$pm$0.14 day, consistent with reprocessing of the X-rays by a surrounding accretion disc. A very similar reverberation delay is observed between ${it Swift}$/XRT X-ray and ${it Swift}$/UVOT UVW2, U lightcurves. Continuum lightcurves extracted from the ${it Swift}$/GRISM spectra show delays with respect to X-rays consistent with reverberation. Separating the UV continuum variations faster and slower than 5 days, the slow variations at 1825 $r{A}$ lag those at 1315 $r{A}$ by $0.29pm0.06$ day, while the fast variations are coincident ($0.04pm0.12$ day). The UV/optical continuum reverberation lag from ${it IUE}$, ${it Swift}$ and other optical telescopes at different wavelengths are consistent with the relationship: $tau propto lambda^{4/3}$, predicted for the standard accretion disc theory while the best-fit X-ray delay from ${it RXTE}$ and ${it Swift}$/XRT shows a negative X-ray offset of $sim$0.38 days from the standard disc delay prediction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا