ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio and X-ray variability in the Seyfert galaxy NGC 4051

495   0   0.0 ( 0 )
 نشر من قبل Sadie Jones
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present intensive quasi-simultaneous X-ray and radio monitoring of the narrow line Seyfert 1 galaxy NGC 4051, over a 16 month period in 2000-2001. Observations were made with the Rossi Timing X-ray Explorer (RXTE) and the Very Large Array (VLA) at 8.4 and 4.8 GHz. In the X-ray band NGC 4051 behaves much like a Galactic black hole binary (GBH) system in a `soft-state. In such systems, there has so far been no firm evidence for an active, radio-emitting jet like those found in `hard state GBHs. VLBI observations of NGC 4051 show three co-linear compact components. This structure resembles the core and outer hot spots seen in powerful, jet-dominated, extragalactic radio sources and suggests the existence of a weak jet. Radio monitoring of the core of NGC 4051 is complicated by the presence of surrounding extended emission and by the changing array configurations of the VLA. Only in the A configuration is the core reasonably resolved. We have carefully removed the contaminations of the core by extended emission in the various arrays. The resulting lightcurve shows no sign of large amplitude variability (i.e. factor 50 %) over the 16 month period. Within the most sensitive configuration (A array) we see marginal evidence for radio core variability of ~25% (~0.12 mJy at 8.4GHz) on a 2-week timescale, correlated with X-ray variations. Even if the radio variations in NGC 4051 are real, the percentage variability is much less than in the X-ray band. Within the B configuration observations, where sensitivity is reduced, there is no sign of correlated X-ray/radio variability. The lack of radio variability in NGC 4051, which we commonly see in `hard state GBHs, may be explained by orientation effects. Another possibility is that the radio emission arises from the X-ray corona, although the linear structure of the compact radio components here is hard to explain.



قيم البحث

اقرأ أيضاً

We discuss the origin of the optical variations in the Narrow line Seyfert 1 galaxy NGC 4051 and present the results of a cross-correlation study using X-ray and optical light curves spanning more than 12 years. The emission is highly variable in all wavebands, and the amplitude of the optical variations is found to be smaller than that of the X-rays, even after correcting for the contaminating host galaxy flux falling inside the photometric aperture. The optical power spectrum is best described by an unbroken power law model with slope $alpha=1.4^{+0.6}_{-0.2}$ and displays lower variability power than the 2-10 keV X-rays on all time-scales probed. We find the light curves to be significantly correlated at an optical delay of $1.2^{+1.0}_{-0.3}$ days behind the X-rays. This time-scale is consistent with the light travel time to the optical emitting region of the accretion disc, suggesting that the optical variations are driven by X-ray reprocessing. We show, however, that a model whereby the optical variations arise from reprocessing by a flat accretion disc cannot account for all the optical variability. There is also a second significant peak in the cross-correlation function, at an optical delay of $39^{+2.7}_{-8.4}$ days. The lag is consistent with the dust sublimation radius in this source, suggesting that there is a measurable amount of optical flux coming from the dust torus. We discuss the origin of the additional optical flux in terms of reprocessing of X-rays and reflection of optical light by the dust.
We present both phenomenological and more physical photoionization models of the Chandra HETG spectra of the Seyfert-1 AGN NGC 4051. We detect 40 absorption and emission lines, encompassing highly ionized charge states from O, Ne, Mg, Si, S and the F e L-shell and K-shell. Two independent photoionization packages, XSTAR and Cloudy, were both used to self-consistently model the continuum and line spectra. These fits detected three absorbing regions in this system with densities ranging from 10^{10} to 10^{11} cm^{-3}. In particular, our XSTAR models require three components that have ionization parameters of log xi = 4.5, 3.3, & 1.0, and are located within the BLR at 70, 300, and 13,000 R_g, respectively, assuming a constant wind density. Larger radii are inferred for density profiles which decline with radius. The Cloudy models give a similar set of parameters with ionization parameters of log xi = 5.0, 3.6, & 2.2 located at 40, 200, and 3,300 R_g. We demonstrate that these regions are out-flowing from the system, and carry a small fraction of material out of the system relative to the implied mass accretion rate. The data suggest that magnetic fields may be an important driving mechanism.
We present a flux-resolved X-ray analysis of the dwarf Seyfert 1.8 galaxy NGC 4395, based on three archival $XMM-Newton$ and one archival $NuSTAR$ observations. The source is known to harbor a low mass black hole ($sim 10^4- {rm a~ few~}times 10^{5}~ rm M_odot$) and shows strong variability in the full X-ray range during these observations. We model the flux-resolved spectra of the source assuming three absorbing layers: neutral, mildly ionized, and highly ionized ($N_{rm H} sim 1.6times 10^{22}-3.4 times 10^{23}~rm cm^{-2}$, $sim 0.8-7.8 times 10^{22}~rm cm^{-2}$, and $ 3.8 times 10^{22}~rm cm^{-2}$, respectively. The source also shows intrinsic variability by a factor of $sim 3$, on short timescales, due to changes in the nuclear flux, assumed to be a power law ($Gamma = 1.6-1.67$). Our results show a positive correlation between the intrinsic flux and the absorbers ionization parameter. The covering fraction of the neutral absorber varies during the first $XMM-Newton$ observation, which could explain the pronounced soft X-ray variability. However, the source remains fully covered by this layer during the other two observations, largely suppressing the soft X-ray variability. This suggests an inhomogeneous and layered structure in the broad line region. We also find a difference in the characteristic timescale of the power spectra between different energy ranges and observations. We finally show simulated spectra with $XRISM$, $Athena$, and $eXTP$, which will allow us to characterize the different absorbers, study their dynamics, and will help us identify their locations and sizes.
111 - Xinwen Shu 2012
We present the result of the Chandra high-resolution observation of the Seyfert~2 galaxy NGC 7590. This object was reported to show no X-ray absorption in the low-spatial resolution ASCA data. The XMM observations show that the X-ray emission of NGC 7590 is dominated by an off-nuclear ultra-luminous X-ray source (ULX) and an extended emission from the host galaxy, and the nucleus is rather weak, likely hosting a Compton-thick AGN. Our recent Chandra observation of NGC 7590 enables to remove the X-ray contamination from the ULX and the extended component effectively. The nuclear source remains undetected at ~4x10^{-15} erg/s/cm^-2 flux level. Although not detected, Chandra data gives a 2--10 keV flux upper limit of ~6.1x10^{-15} erg/s/cm^-2 (at 3 sigma level), a factor of 3 less than the XMM value, strongly supporting the Compton-thick nature of the nucleus. In addition, we detected five off-nuclear X-ray point sources within the galaxy D25 ellipse, all with 2 -- 10 keV luminosity above 2x10^{38} erg/s (assuming the distance of NGC 7590). Particularly, the ULX previously identified by ROSAT data was resolved by Chandra into two distinct X-ray sources. Our analysis highlights the importance of high spatial resolution images in discovering and studying ULXs.
The powerlaw X-ray spectra of active galactic nuclei at moderate to high accretion rates normally appear softer when they brighten, for which the underlying mechanisms are yet unclear. Utilizing XMM-Newton observations and excluding photons $<$ 2 keV to avoid contamination from the soft excess, in this work we scrutinize the powerlaw spectral variability of NCG 4051 from two new aspects. We first find that a best-fit softer-when-brighter relation is statistically insufficient to explain the observed spectral variabilities, and intervals deviated from the empirical relation are clearly visible in the light curve of 2 -- 4 keV/4 -- 10 keV count rate ratio. The deviations are seen not only between but also within individual XMM-Newton exposures, consistent with random variations of the corona geometry or inner structure (with timescales as short as $sim$ 1 ks), in addition to those behind the smooth softer-when-brighter trend. We further find the softer-when-brighter trend gradually weakens with the decreasing timescale (from $sim$ 100 ks down to 0.5 ks). These findings indicate that the powerlaw spectral slope is not solely determined by its brightness. We propose a two-tier geometry, including flares/nano-flares on top of the inner disc and an embedding extended corona (heated by the flares, in analogy to solar corona) to explain the observations together with other observational clues in literature. Rapid spectral variabilities could be due to individual flares/nano-flares, while slow ones are driven by the variations in the global activity of inner disc region (akin to the variation of solar activity, but not the accretion rate) accompanied with heating/cooling and inflation/contraction of the extended corona.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا