ﻻ يوجد ملخص باللغة العربية
We describe our algorithm for measuring the Hubble constant from Ryle Telescope (RT) interferometric observations of the Sunyaev-Zeldovich (SZ) effect from a galaxy cluster and observation of the cluster X-ray emission. We analyse the error budget in this method: as well as radio and X-ray random errors, we consider the effects of clumping and temperature differences in the cluster gas, of the kinetic SZ effect, of bremsstrahlung emission at radio wavelengths, of the gravitational lensing of background radio sources and of primary calibration error. Using RT, ASCA and ROSAT observations of the cluster Abell 1413, we find that random errors dominate over systematic ones, and estimate H_0 = 57^{+23}_{-16} km/s/Mpc (1-sigma errors).
Two sources of geometric information are encoded in the galaxy power spectrum: the sound horizon at recombination and the horizon at matter-radiation equality. Analyzing the BOSS DR12 galaxy power spectra using perturbation theory with $Omega_m$ prio
An accurate determination of the Hubble constant remains a puzzle in observational cosmology. The possibility of a new physics has emerged with a significant tension between the current expansion rate of our Universe measured from the cosmic microwav
We present new Ryle Telescope (RT) observations of the Sunyaev Zeldovich (SZ) decrement from the cluster Abell 773. The field contains a number of faint radio sources that required careful subtraction. We use ASCA observations to measure the gas temp
We present new parallax measurements of 7 long-period (> 10 days) Milky Way Cepheids (SS CMa, XY Car, VY Car, VX Per, WZ Sgr, X Pup and S Vul) using astrometry from spatial scanning of WFC3 on HST. Observations were obtained at 6 month intervals over
The Cosmic Evolution Survey (COSMOS) was initiated with an extensive allocation (590 orbits in Cycles 12-13) using the Hubble Space Telescope (HST) for high resolution imaging. Here we review the characteristics of the HST imaging with the Advanced