ترغب بنشر مسار تعليمي؟ اضغط هنا

New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant

122   0   0.0 ( 0 )
 نشر من قبل Adam G. Riess
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new parallax measurements of 7 long-period (> 10 days) Milky Way Cepheids (SS CMa, XY Car, VY Car, VX Per, WZ Sgr, X Pup and S Vul) using astrometry from spatial scanning of WFC3 on HST. Observations were obtained at 6 month intervals over 4 years. The distances are 1.7--3.6 kpc with a mean precision of 45 microarcseconds and a best of 29 microarcseconds (SNR = 14). The accuracy of the parallaxes is demonstrated through independent analyses of >100 reference stars. This raises to 10 the number of long-period Cepheids with significant parallax measurements, 8 obtained from this program. We also present high-precision F555W, F814W, and F160W magnitudes of these Cepheids, allowing a direct, zeropoint-independent comparison to >1800 extragalactic Cepheids in the hosts of 19 SNeIa. This sample addresses two outstanding systematic uncertainties affecting prior comparisons of Milky Way and extragalactic Cepheids used to calibrate H_0: their dissimilarity of periods and photometric systems. Comparing the new parallaxes to their predicted values derived from reversing the distance ladder gives a ratio (or independent scale for H_0) of 1.037+/-0.036, consistent with no change and inconsistent at the 3.5 sigma level with a ratio of 0.91 needed to match the value predicted by Planck+LCDM. Using these data instead to augment the Riess et al. (2016) measurement of H_0 improves the precision to 2.3%, yielding 73.48+/-1.66 km/s/Mpc, and tension with Planck+LCDM increases to 3.7 sigma. The future combination of Gaia parallaxes and HST spatial scanning photometry of 50 Milky Way Cepheids can support a < 1% calibration of H_0.



قيم البحث

اقرأ أيضاً

We present a high-precision measurement of the parallax for the 12-day Cepheid SS Canis Majoris, obtained via spatial scanning with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). Spatial scanning enables astrometric measurements with a precision of 20-40 muas, an order of magnitude better than pointed observations. SS CMa is the second Cepheid targeted for parallax measurement with HST, and is the first of a sample of eighteen long-period >~ 10 days) Cepheids selected in order to improve the calibration of their period-luminosity relation and eventually permit a determination of the Hubble constant H_0 to better than 2%. The parallax of SS CMa is found to be 348 +/- 38 muas, corresponding to a distance of 2.9 +/- 0.3 kpc. We also present a refinement of the static geometric distortion of WFC3 obtained using spatial scanning observations of calibration fields, with a typical magnitude <~0.01 pixels on scales of 100 pixels.
We have conducted an imaging survey with the Hubble Space Telescope Wide Field Camera~3 (WFC3) of 70 Galactic Cepheids, typically within 1~kpc, with the aim of finding resolved physical companions. The WFC3 field typically covers the 0.1 pc area wher e companions are expected. In this paper, we identify 39 Cepheids having candidate companions, based on their positions in color--magnitude diagrams, and having separations $geq$5$$ from the Cepheids. We use follow-up observations of 14 of these candidates with XMM-Newton, and of one of them with ROSAT, to separate X-ray-active young stars (probable physical companions) from field stars (chance alignments). Our preliminary estimate, based on the optical and X-ray observations, is that only 3% of the Cepheids in the sample have wide companions. Our survey easily detects resolved main-sequence companions as faint as spectral type K ull. Thus the fact that the two most probable companions (those of FF~Aql and RV~Sco) are earlier than type K is not simply a function of the detection limit. We find no physical companions having separations larger than 4,000~AU in the X-ray survey. Two Cepheids are exceptions in that they do have young companions at significantly larger separations ($delta$~Cep and S~Nor), but both belong to a cluster or a loose association, so our working model is that they are not gravitationally bound binary members, but rather cluster/association members. All of these properties provide constraints on both star formation and subsequent dynamical evolution. The low frequency of true physical companions at separations $>!5$ is confirmed by examination of the subset of the nearest Cepheids and also the density of the fields.
Cepheids in multiple systems provide information on the outcome of the formation of massive stars. They can also lead to exotic end-stage objects. This study concludes our survey of 70 galactic Cepheids using the {it Hubble Space Telescope} (HST) Wid e Field Camera~3 (WFC3) with images at two wavelengths to identify companions closer than $5arcsec$. In the entire WFC3 survey we identify 16 probable companions for 13 Cepheids. The seven Cepheids having resolved candidate companions within $2$ all have the surprising property of themselves being spectroscopic binaries (as compared with a 29% incidence of spectroscopic binaries in the general Cepheid population). That is a strong suggestion that an inner binary is linked to the scenario of a third companion within a few hundred~AU ull. This characteristic is continued for more widely separated companions. Under a model where the outer companion is formed first, it is unlikely that it can anticipate a subsequent inner binary. Rather it is more likely that a triple system has undergone dynamical interaction, resulting in one star moving outward to its current location. {it Chandra} and {it Gaia} data as well as radial velocities and HSTSTIS and {it IUE} spectra are used to derive properties of the components of the Cepheid systems. The colors of the companion candidates show a change in distribution at approximately 2000~AU separations, from a range including both hot and cool colors for closer companions, to only low-mass companions for wider separations.
We present absolute parallaxes and proper motions for seven members of the Hyades open cluster, pre-selected to lie in the core of the cluster. Our data come from archival astrometric data from FGS 3, and newer data for 3 Hyads from FGS 1R, both whit e-light interferometers on the Hubble Space Telescope (HST). We obtain member parallaxes from six individual Fine Guidance Sensor (FGS) fields and use the field containing van Altena 622 and van Altena 627 (= HIP 21138) as an example. Proper motions, spectral classifications and VJHK photometry of the stars comprising the astrometric refer- ence frames provide spectrophotometric estimates of reference star absolute parallaxes. Introducing these into our model as observations with error, we determine absolute parallaxes for each Hyad. The parallax of vA 627 is significantly improved by including a perturbation orbit for this previously known spectroscopic binary, now an astrometric binary. Compared to our original (1997) determina- tions, a combination of new data, updated calibration, and improved analysis lowered the individual parallax errors by an average factor of 4.5. Comparing parallaxes of the four stars contained in the Hipparcos catalog, we obtain an average factor of 11 times improvement with the HST . With these new results, we also have better agreement with Hipparcos for the four stars in common. These new parallaxes provide an average distance for these seven members, < D > = 47.5 pc, for the core a pm 1 - {sigma} dispersion depth of 3.6 pc, and a minimum depth from individual components of 16.0 pm 0.9 pc. Absolute magnitudes for each member are compared to established main sequences, with excellent agreement. We obtain a weighted average distance modulus for the core of the Hyades of m-M=3.376 pm 0.01, a value close to the previous Hipparcos values, m-M=3.33pm 0.02.
The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84 yr period by the faint DQZ white dwarf Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurem ents back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 +/- 0.012 Msun and 0.592 +/- 0.006 Msun for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon As age is ~2.7 Gyr. Procyon Bs location in the H-R diagram is in excellent agreement with theoretical cooling tracks for white dwarfs of its dynamical mass. Its position in the mass-radius plane is also consistent with theory, assuming a carbon-oxygen core and a helium-dominated atmosphere. Its progenitors mass was 1.9-2.2 Msun, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only ~5 AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (~0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا