ﻻ يوجد ملخص باللغة العربية
The global structure of galaxy clusters and its evolution are tested within a large set of TREESPH simulations, so to allow a fair statistical comparison with available X-ray data. Structure tests are based on the power ratios, introduced by Buote & Tsai. Cosmological models considered are CDM, LCDM (Omega_L=0.7) and CHDM (1 mass.neu., Omega_h = 0.2). All models are normalized to provide a fair number density of clusters. For each model we run a P3M simulation in a large box, where we select the most massive 40 clusters. Going back to the initial redshift we run a hydro-TREESPH simulation for each of them. In this way we perform a statistical comparison of the global morphology of clusters, for each cosmological model, with ROSAT data, using Student t-test, F-test and K-S test. The last test and its generalization to 2--D distributions are also used to compare the joint distributions of 2 or 3 power ratios. We find that, using DM distribution, instead of gas, as done by some authors, leads to biased results, as baryons are distributed in a less structured way than DM. We also find that the cosmological models considered have different behaviours in these tests: LCDM has the worst performance. CDM and our CHDM have similar scores. The general trend of power ratio distributions is already fit by these models, but a further improvement is expected either from a different DM mix or a non-flat CDM model.
The morphology and the distribution of material observed in SNRs reflect the interaction of the SN blast wave with the ambient environment, the physical processes associated with the SN explosion and the internal structure of the progenitor star. IC
If the hot, X-ray emitting gas in rich clusters forms a fair sample of the universe (as in Cold Dark Matter (CDM) models), and the universe is at the critical density, $Omega_T = 1$, then the data appears to imply a baryon fraction, $Omega_{b,x}$ ($O
As with other mixed morphology remnants, W44s projected center is bright in thermal X-rays. It has an obvious radio shell, but no discernable X-ray shell. X-ray bright knots dot W44s image. The Chandra data show that the remnants hot, bright projecte
To investigate the relationships between dynamical status and other important characteristics of galaxy clusters, we conducted a study of X-ray cluster morphology using a sample of 101 clusters at redshift z=0.05-1 taken from the Chandra archive. The
Whether the X-ray luminosities of clusters of galaxies evolve has been a contentious issue for over ten years. However, the data available to address this issue have improved dramatically as cluster surveys from the ROSAT archive near completion. The