ترغب بنشر مسار تعليمي؟ اضغط هنا

Cluster X-ray Luminosity Evolution

125   0   0.0 ( 0 )
 نشر من قبل J. Patrick Henry
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Patrick Henry




اسأل ChatGPT حول البحث

Whether the X-ray luminosities of clusters of galaxies evolve has been a contentious issue for over ten years. However, the data available to address this issue have improved dramatically as cluster surveys from the ROSAT archive near completion. There are now three samples of nearby clusters and seven distant cluster samples. We present a uniform analysis of four of the distant cluster samples. Each exhibits highly statistically significant luminosity evolution. We combine three of these samples to measure the high redshift cluster X-ray luminosity function with good statistics that shows the nature of the evolution.



قيم البحث

اقرأ أيضاً

We report measurements of the cluster X-ray luminosity function out to z=0.8 based on the final sample of 201 galaxy systems from the 160 Square Degree ROSAT Cluster Survey. There is little evidence for any measurable change in cluster abundance out to z~0.6 at luminosities less than a few times 10^44 ergs/s (0.5-2.0 keV). However, between 0.6 < z < 0.8 and at luminosities above 10^44 ergs/s, the observed volume densities are significantly lower than those of the present-day population. We quantify this cluster deficit using integrated number counts and a maximum-likelihood analysis of the observed luminosity-redshift distribution fit with a model luminosity function. The negative evolution signal is >3 sigma regardless of the adopted local luminosity function or cosmological framework. Our results and those from several other surveys independently confirm the presence of evolution. Whereas the bulk of the cluster population does not evolve, the most luminous and presumably most massive structures evolve appreciably between z=0.8 and the present. Interpreted in the context of hierarchical structure formation, we are probing sufficiently large mass aggregations at sufficiently early times in cosmological history where the Universe has yet to assemble these clusters to present-day volume densities.
175 - B. J. Maughan 2011
We investigate the form and evolution of the X-ray luminosity-temperature (LT) relation of a sample of 114 galaxy clusters observed with Chandra at 0.1<z<1.3. The clusters were divided into subsamples based on their X-ray morphology or whether they h ost strong cool cores. We find that when the core regions are excluded, the most relaxed clusters (or those with the strongest cool cores) follow an LT relation with a slope that agrees well with simple self-similar expectations. This is supported by an analysis of the gas density profiles of the systems, which shows self-similar behaviour of the gas profiles of the relaxed clusters outside the core regions. By comparing our data with clusters in the REXCESS sample, which extends to lower masses, we find evidence that the self-similar behaviour of even the most relaxed clusters breaks at around 3.5keV. By contrast, the LT slopes of the subsamples of unrelaxed systems (or those without strong cool cores) are significantly steeper than the self-similar model, with lower mass systems appearing less luminous and higher mass systems appearing more luminous than the self-similar relation. We argue that these results are consistent with a model of non-gravitational energy input in clusters that combines central heating with entropy enhancements from merger shocks. Such enhancements could extend the impact of central energy input to larger radii in unrelaxed clusters, as suggested by our data. We also examine the evolution of the LT relation, and find that while the data appear inconsistent with simple self-similar evolution, the differences can be plausibly explained by selection bias, and thus we find no reason to rule out self-similar evolution. We show that the fraction of cool core clusters in our (non-representative) sample decreases at z>0.5 and discuss the effect of this on measurements of the evolution in the LT relation.
The evolution of the properties of the hot gas that fills the potential well of galaxy clusters is poorly known, since models are unable to give robust predictions and observations lack a sufficient redshift leverage and are affected by selection eff ects. Here, with just two high redshift, z approx 1.8, clusters avoiding selection biases, we obtain a significant extension of the redshift range and we begin to constrain the possible evolution of the X-ray luminosity vs temperature relation. The two clusters, JKC041 at z=2.2 and ISCSJ1438+3414 at z=1.41, are respectively the most distant cluster overall, and the second most distant that can be used for studying scaling relations. Their location in the X-ray luminosity vs temperature plane, with an X-ray luminosity 5 times lower than expected, suggests at the 95 % confidence that the evolution of the intracluster medium has not been self-similar in the last three quarters of the Universe age. Our conclusion is reinforced by data on a third, X-ray selected, high redshift cluster, too faint for its temperature when compared to a sample of similarly selected objects. Our data suggest that non-gravitational effects, such as the baryon physics, influence the evolution of galaxy cluster. Precise knowledge of evolution is central for using galaxy clusters as cosmological probes in planned X-ray surveys such as WFXT or JDEM.
We introduce a new test to study the Cosmological Principle with galaxy clusters. Galaxy clusters exhibit a tight correlation between the luminosity and temperature of the X-ray-emitting intracluster medium. While the luminosity measurement depends o n cosmological parameters through the luminosity distance, the temperature determination is cosmology-independent. We exploit this property to test the isotropy of the luminosity distance over the full extragalactic sky, through the normalization $a$ of the $L_X-T$ scaling relation and the cosmological parameters $Omega_m$ and $H_0$. We use two almost independent galaxy cluster samples: the ASCA Cluster Catalog (ACC) and the XMM Cluster Survey (XCS-DR1). Interestingly enough, these two samples appear to have the same pattern for $a$ with respect to the Galactic longitude. We also identify one sky region within $lsim (-15^o,90^o)$ (Group A) that shares very different best-fit values for $a$ for both samples. We find the deviation of Group A to be $2.7sigma$ for ACC and $3.1sigma$ for XCS-DR1. This tension is not relieved after excluding possible outliers or after a redshift conversion to the CMB frame is applied. Using also the HIFLUGCS sample, we show that a possible excess of cool-core clusters in this region, cannot explain the obtained deviations. Moreover, we tested for a dependence of the $L_X-T$ relation on supercluster environment. We indeed find a trend for supercluster members to be underluminous compared to field clusters. However, the fraction of supercluster members is similar in the different sky regions. Constraining $Omega_m$ and $H_0$ via the redshift evolution of $L_X-T$ and the luminosity distance, we obtain approximately the same deviation amplitudes as for $a$. The observed behavior of $Omega_m$ for the sky regions that coincide with the CMB dipole is similar to what was found with other cosmological probes as well.
110 - D. Rosa Gonzalez 2009
In an effort to understand the correlation between X-ray emission and present star formation rate (SFR), we obtained XMM-Newton data to estimate the X-ray luminosities of a sample of actively starforming HII galaxies. The obtained X-ray luminosities are compared to other well known tracers of star formation activity such as the far infrared and the ultraviolet luminosities. We also compare the obtained results with empirical laws from the literature and with recently published analysis applying synthesis models. We use the time delay between the formation of the stellar cluster and that of the first X-ray binaries, in order to put limits on the age of a given stellar burst. We conclude that the generation of soft X-rays, as well as the Ha or infrared luminosities is instantaneous. The relation between the observed radio and hard X-ray luminosities, on the other hand, points to the existence of a time delay between the formation of the stellar cluster and the explosion of the first massive stars and the consequent formation of supernova remnants and high mass X-ray binaries (HMXB) which originate the radio and hard X-ray fluxes respectively. When comparing hard X-rays with a star formation indicator that traces the first million years of evolution (e.g. Ha luminosities) we found a deficit in the expected X-ray luminosity. This deficit is not found when the X-ray luminosities are compared with infrared luminosities, a star formation tracer that represents an average over the last 10^8 years. The results support the hypothesis that hard X-rays are originated in X-ray binaries which, as supernova remnants, have a formation time delay of a few mega years after the starforming burst.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا