ﻻ يوجد ملخص باللغة العربية
We present a search for high energy gamma-ray emission from 9 nearby starburst galaxies and M31 with the EGRET instrument aboard CGRO. Though the diffuse gamma-ray emission from starburst galaxies was suspected to be detectable, we find no emission from NGC 253, M82 nor from the average of all 9 galaxies. The 2 sigma upper limit for the EGRET flux above 100 MeV for the averaged survey observations is 1.8 x 10-8 ph cm-2 s-1. From a model of the expected radio and gamma-ray emission, we find that the magnetic field in the nuclei of these galaxies is > 25 micro Gauss, and the ratio of proton and electron densities is < 400. The EGRET limits indicate that the rate of massive star formation in the survey galaxies is only about an order of magnitude higher than in the Milky Way. The upper limit to the gamma-ray flux above 100 MeV for M31 is 1.6 x 10-8 ph cm-2 s-1. At the distance of M31, the Milky Way flux would be over twice this value, indicating higher gamma-ray emissivities in our Galaxy. Therefore, since the supernova rate of the Milky Way is higher than in M31, our null detection of M31 supports the theory of the supernova origin of cosmic rays in galaxies.
Millisecond Pulsars are second most abundant source population discovered by the Fermi-LAT. They might contribute non-negligibly to the diffuse emission measured at high latitudes by Fermi-LAT, the IDGRB. Gamma-ray sources also contribute to the anis
The CANGAROO-II telescope observed sub-TeV gamma-ray emission from the nearby starburst galaxy NGC 253. The emission region was extended with a radial size of 0.3-0.6 degree. On the contrary, H.E.S.S could not confirm this emission and gave upper lim
We study the diffuse X-ray luminosity ($L_X$) of star forming galaxies using 2-D axisymmetric hydrodynamical simulations and analytical considerations of supernovae (SNe) driven galactic outflows. We find that the mass loading of the outflows, a cruc
Active galactic nuclei (AGN) with jets seen at small viewing angles are the most luminous and abundant objects in the $gamma$-ray sky. AGN with jets misaligned along the line-of-sight appear fainter in the sky, but are more numerous than the brighter
We calculate the diffuse $gamma$-ray emission due to the population of misaligned AGN (MAGN) unresolved by the Large Area Telescope (LAT) on the {it Fermi} Gamma-ray Space Telescope ({it Fermi}). A correlation between the $gamma$-ray luminosity and t