ترغب بنشر مسار تعليمي؟ اضغط هنا

Erratum: Detection of diffuse TeV gamma-ray emission from the nearby starburst galaxy NGC 253

258   0   0.0 ( 0 )
 نشر من قبل Ryoji Enomoto
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The CANGAROO-II telescope observed sub-TeV gamma-ray emission from the nearby starburst galaxy NGC 253. The emission region was extended with a radial size of 0.3-0.6 degree. On the contrary, H.E.S.S could not confirm this emission and gave upper limits at the level of the CANGAROO-II flux. In order to resolve this discrepancy, we analyzed new observational results for NGC 253 by CANGAROO-III and also assessed the results by CANGAROO-II. Observation was made with three telescopes of the CANGAROO-III in October 2004. We analyzed three-fold coincidence data by the robust Fisher Discriminant method to discriminate gamma ray events from hadron events. The result by the CANGAROO-III was negative. The upper limit of gamma ray flux was 5.8% Crab at 0.58 TeV for point-source assumption. In addition, the significance of the excess flux of gamma-rays by the CANGAROO-II was lowered to less than 4 sigma after assessing treatment of malfunction of photomultiplier tubes.



قيم البحث

اقرأ أيضاً

Very-high-energy (VHE; E >100 GeV) and high-energy (HE; 100 MeV < E < 100 GeV) data from gamma-ray observations performed with the H.E.S.S. telescope array and the Fermi-LAT instrument, respectively, are analysed in order to investigate the non-therm al processes in the starburst galaxy NGC 253. The VHE gamma-ray data can be described by a power law in energy with differential photon index Gamma=2.14 pm 0.18_stat pm 0.30_sys and differential flux normalisation at 1 TeV of F_0 = (9.6 pm 1.5_stat (+5.7,-2.9)_sys) x 10^{-14} TeV^{-1} cm^{-2} s^{-1}. A power-law fit to the differential HE gamma-ray spectrum reveals a photon index of Gamma=2.24 pm 0.14_stat pm 0.03_sys and an integral flux between 200 MeV and 200 GeV of F(0.2-200 GeV) = (4.9 pm 1.0_stat pm 0.3_sys) x 10^{-9} cm^{-2} s^{-1}. No evidence for a spectral break or turnover is found over the dynamic range of both the LAT instrument and the H.E.S.S. experiment: a combined fit of a power law to the HE and VHE gamma-ray data results in a differential photon index Gamma=2.34 pm 0.03 with a p-value of 30%. The gamma-ray observations indicate that at least about 20% of the energy of the cosmic rays capable of producing hadronic interactions is channeled into pion production. The smooth alignment between the spectra in the HE and VHE gamma-ray domain suggests that the same transport processes dominate in the entire energy range. Advection is most likely responsible for charged particle removal from the starburst nucleus from GeV to multiple TeV energies. In a hadronic scenario for the gamma-ray production, the single overall power-law spectrum observed would therefore correspond to the mean energy spectrum produced by the ensemble of cosmic-ray sources in the starburst region.
Aims: We present a study of the diffuse X-ray emission in the halo and the disc of the starburst galaxy NGC 253. Methods: After removing point-like sources, we analysed XMM-Newton images, hardness ratio maps and spectra from several regions in the ha lo and the disc. We introduce a method to produce vignetting corrected images from the EPIC pn data, and we developed a procedure that allows a correct background treatment for low surface brightness spectra, using a local background, together with closed filter observations. Results: Most of the emission from the halo is at energies below 1 keV. In the disc, also emission at higher energies is present. The extent of the diffuse emission along the major axis of the disc is 13.6 kpc. The halo resembles a horn structure and reaches out to ~9 kpc perpendicular to the disc. Disc regions that cover star forming regions, like spiral arms, show harder spectra than regions with lower star forming activity. Models for spectral fits of the disc regions need at least three components: two thermal plasmas with solar abundances plus a power law and galactic foreground absorption. Temperatures are between 0.1 and 0.3 keV and between 0.3 and 0.9 keV for the soft and the hard component, respectively. The power law component may indicate an unresolved contribution from X-ray binaries in the disc. The halo emission is not uniform, neither spatially nor spectrally. The southeastern halo is softer than the northwestern halo. To model the spectra in the halo, we needed two thermal plasmas with solar abundances plus galactic foreground absorption. Temperatures are around 0.1 and 0.3 keV. A comparison between X-ray and UV emission shows that both originate from the same regions.
209 - Volker Heesen 2009
Radio halos require the coexistence of extra-planar cosmic rays and magnetic fields. Because cosmic rays are injected and accelerated by processes related to star formation in the disk, they have to be transported from the disk into the halo. A verti cal large-scale magnetic field can significantly enhance this transport. We observed NGC 253 using radio continuum polarimetry with the Effelsberg and VLA telescopes. The radio halo of NGC 253 has a dumbbell shape with the smallest vertical extension near the center. With an estimate for the electron lifetime, we measured the cosmic-ray bulk speed as 300+/-30 km/s which is constant over the extent of the disk. This shows the presence of a disk wind in NGC 253. We propose that the large-scale magnetic field is the superposition of a disk (r,phi) and a halo (r,z) component. The disk field is an inward-pointing spiral with even parity. The conical (even) halo field appears in projection as an X-shaped structure, as observed in other edge-on galaxies. Interaction by compression in the walls of the superbubbles may explain the observed alignment between the halo field and the lobes of hot Halpha- and soft X-ray emitting gas. The disk wind is a good candidate for the transport of small-scale helical fields, required for efficient dynamo action, and as a source for the neutral hydrogen observed in the halo.
We report the detection of high-energy gamma-ray emission from two starburst galaxies using data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been detected at signif icance levels of 6.8 sigma and 4.8 sigma respectively, from sources positionally coincident with locations of the starburst galaxies M82 and NGC 253. The total fluxes of the sources are consistent with gamma-ray emission originating from the interaction of cosmic rays with local interstellar gas and radiation fields and constitute evidence for a link between massive star formation and gamma-ray emission in star-forming galaxies.
148 - V. Heesen 2008
Using radio polarimetry we study the connection between the transport of cosmic rays (CRs), the three-dimensional magnetic field structure, and features of other ISM phases in the halo of NGC 253. We present a new sensitive radio continuum map of NGC 253 obtained from combined VLA and Effelsberg observations at lambda 6.2 cm. We find a prominent radio halo with a scaleheight of the thick radio disk of 1.7 kpc. The linear dependence between the local scaleheight of the vertical continuum emission and the cosmic ray electron (CRE) lifetime requires a vertical CR bulk speed of 270 km s^-1. The magnetic field structure of NGC 253 resembles an ``X-shaped configuration where the orientation of the large-scale magnetic field is plane-parallel only in the inner regions of the disk and at small distances from the galactic midplane. At larger galactocentric radii and further away from the midplane the vertical component becomes important. This is most clearly visible at the location of the ``radio spur southeast of the nucleus, where the magnetic field orientation is almost vertical. We made a simple model for the dominant toroidal (r,phi) magnetic field component using a spiral magnetic field with prescribed inclination and pitch angle. The residual poloidal (r,phi,z) magnetic field component which was revealed by subtracting the model from the observations shows a distinct ``X-shaped magnetic field orientation centered on the nucleus. The orientation angle of the poloidal magnetic field is consistent with a magnetic field transport described by the superposition of the vertical CR bulk speed and the rotation velocity. Hence, we propose a disk wind which transports cosmic rays, magnetic field, and (partially) ionized gas from the disk into the halo.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا