ﻻ يوجد ملخص باللغة العربية
We investigate the use of wavelet transforms in detecting and characterising non-Gaussian structure in maps of the cosmic microwave background (CMB). We apply the method to simulated maps of the Kaiser-Stebbins effect due to cosmic strings onto which Gaussian signals of varying amplitudes are superposed. We find the method significantly outperforms standard techniques based on measuring the moments of the pixel temperature distribution. We also compare the results with those obtained using techniques based on Minkowski functionals, and we again find the wavelet method to be superior. In particular, using the wavelet technique, we find that it is possible to detect non-Gaussianity even in the presence of a superposed Gaussian signal with five times the rms amplitude of the original cosmic string map. We also find that the wavelet technique is useful in characterising the angular scales at which the non-Gaussian signal occurs.
The non-Gaussianity of inflationary perturbations, as encoded in the bispectrum (or 3-point correlator), has become an important additional way of distinguishing between inflation models, going beyond the linear Gaussian perturbation quantities of th
Tensor non-Gaussianities are a key ingredient to test the symmetries and the presence of higher spin fields during the inflationary epoch. Indeed, the shape of the three point correlator of the graviton is totally fixed by the symmetries of the de Si
We investigate the power of wavelet techniques in detecting non-Gaussianity in the cosmic microwave background (CMB). We use the method to discriminate between an inflationary and a cosmic strings model using small simulated patches of the sky. We sh
This paper reviews the application of a novel methodology for analysing the isotropy of the universe by probing the alignment of local structures in the CMB. The strength of the proposed methodology relies on the steerable wavelet filtering of the CM
Using a discrete wavelet based space-scale decomposition (SSD), the spectrum of the skewness and kurtosis is developed to describe the non-Gaussian signatures in cosmologically interesting samples. Because the basis of the discrete wavelet is compact