ﻻ يوجد ملخص باللغة العربية
This paper reviews the application of a novel methodology for analysing the isotropy of the universe by probing the alignment of local structures in the CMB. The strength of the proposed methodology relies on the steerable wavelet filtering of the CMB signal. One the one hand, the filter steerability renders the computation of the local orientation of the CMB features affordable in terms of computation time. On the other hand, the scale-space nature of the wavelet filtering allows to explore the alignment of the local structures at different scales, probing possible different phenomena. We present the WMAP first-year data analysis recently performed by the same authors (Wiaux et al.), where an extremely significant anisotropy was found. In particular, a preferred plane was detected, having a normal direction with a northern end position close to the northern end of the CMB dipole axis. In addition, a most preferred direction was found in that plane, with a northern end direction very close to the north ecliptic pole. This result synthesised for the first time previously reported anomalies identified in the direction of the dipole and the ecliptic poles axes. In a forthcoming paper (Vielva et al.), we have extended our analysis to the study of individual frequency maps finding first indications for discarding foregrounds as the origin of the anomaly. We have also tested that the preferred orientations are defined by structures homogeneously distributed in the sky, rather than from localised regions. We have also analysed the WMAP 3-year data, finding the same anomaly pattern, although at a slightly lower significance level.
We investigate the use of wavelet transforms in detecting and characterising non-Gaussian structure in maps of the cosmic microwave background (CMB). We apply the method to simulated maps of the Kaiser-Stebbins effect due to cosmic strings onto which
Baryon Acoustic Oscillations (BAO) are a feature imprinted in the density field by acoustic waves travelling in the plasma of the early universe. Their fixed scale can be used as a standard ruler to study the geometry of the universe. BAO have been p
Cryo-electron microscopy nowadays often requires the analysis of hundreds of thousands of 2D images as large as a few hundred pixels in each direction. Here we introduce an algorithm that efficiently and accurately performs principal component analys
In this paper high resolution wave probe records are examined using wavelet techniques with a view to determining the sources and relative contributions of capillary wave energy along representative wind wave forms. Wavelets enable computations of co
Complex systems are composed of mutually interacting components and the output values of these components are usually long-range cross-correlated. We propose a method to characterize the joint multifractal nature of such long-range cross correlations