ﻻ يوجد ملخص باللغة العربية
We have calculated synchrotron spectra of relativistic blast waves, and find predicted characteristic frequencies that are more than an order of magnitude different from previous calculations. For the case of an adiabatically expanding blast wave, which is applicable to observed gamma-ray burst (GRB) afterglows at late times, we give expressions to infer the physical properties of the afterglow from the measured spectral features. We show that enough data exist for GRB970508 to compute unambiguously the ambient density, n=0.03/cm**3, and the blast wave energy per unit solid angle, E=3E52 erg/4pi sr. We also compute the energy density in electrons and magnetic field. We find that they are 12% and 9%, respectively, of the nucleon energy density and thus confirm for the first time that both are close to but below equipartition. For GRB971214, we discuss the break found in its spectrum by Ramaprakash et al. (1998). It can be interpreted either as the peak frequency or as the cooling frequency; both interpretations have some problems, but on balance the break is more likely to be the cooling frequency. Even when we assume this, our ignorance of the self-absorption frequency and presence or absence of beaming make it impossible to constrain the physical parameters of GRB971214 very well.
We report on the results of optical follow-up observations of the counterpart of GRB 970508, starting 7 hours after the event. Multi-color U, B, V, R$_{c}$ and I$_{c}$ band observations were obtained during the first three consecutive nights. The cou
The curvature of a relativistic blast wave implies that its emission arrives to observers with a spread in time. This effect is believed to wash out fast variability in the lightcurves of GRB afterglows. We note that the spreading effect is reduced i
After more than 40 years from their discovery, the long-lasting tension between predictions and observations of GRBs prompt emission spectra starts to be solved. We found that the observed spectra can be produced by the synchrotron process, if the em
We present a comprehensive analysis of a bright, long duration (T90 ~ 257 s) GRB 110205A at redshift z= 2.22. The optical prompt emission was detected by Swift/UVOT, ROTSE-IIIb and BOOTES telescopes when the GRB was still radiating in the gamma-ray b
The afterglow of GRB 170817A has been detected for more than three years, but the origin of the multi-band afterglow light curves remains under debate. A classical top-hat jet model is faced with difficulties in producing a shallow rise of the afterg