ﻻ يوجد ملخص باللغة العربية
After more than 40 years from their discovery, the long-lasting tension between predictions and observations of GRBs prompt emission spectra starts to be solved. We found that the observed spectra can be produced by the synchrotron process, if the emitting particles do not completely cool. Evidence for incomplete cooling was recently found in Swift GRBs spectra with prompt observations down to 0.5 keV (Oganesyan et al. 2017, 2018), characterized by an additional low-energy break. In order to search for this break at higher energies, we analysed the 10 long and 10 short brightest GRBs detected by the Fermi satellite in over 10 years of activity. We found that in 8/10 long GRBs there is compelling evidence of a low energy break (below the peak energy) and the photon indices below and above that break are remarkably consistent with the values predicted by the synchrotron spectrum (-2/3 and -3/2, respectively). None of the ten short GRBs analysed shows a break, but the low energy spectral slope is consistent with -2/3. Within the framework of the GRB standard model, these results imply a very low magnetic field in the emission region, at odds with expectations. I also present the spectral evolution of GRB 190114C, the first GRB detected with high significance by the MAGIC Telescopes, which shows the compresence (in the keV-MeV energy range) of the prompt and of the afterglow emission, the latter rising and dominating the high energy part of the spectral energy range.
Particle acceleration is a fundamental process in many high-energy astrophysical environments and determines the spectral features of their synchrotron emission. We have studied the adiabatic stochastic acceleration (ASA) of electrons arising from th
(abridged)Prompt GRB emission is often interpreted as synchrotron radiation from high-energy electrons accelerated in internal shocks. Fast synchrotron cooling predicts that the photon index below the spectral peak is alpha=-3/2. This differs signifi
GRB 120323A is a very intense short Gamma Ray Burst (GRB) detected simultaneously during its prompt gamma-ray emission phase with the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope and the Konus experiment on board the Win
As a backend to the first station of the Long Wavelength Array (LWA1) the Prototype All Sky Imager (PASI) has been imaging the sky $>$ -26$^{circ}$ declination during 34 Gamma Ray Bursts (GRBs) between January 2012 and May 2013. Using this data we we
We discuss the new surprising observational results that indicate quite convincingly that the prompt emission of Gamma-Ray Bursts (GRBs) is due to synchrotron radiation produced by a particle distribution that has a low energy cut-off. The evidence o