ﻻ يوجد ملخص باللغة العربية
In a recent paper (Ushov, PRL, 80, 230, 1998), it has been claimed that the bare surface of a strange star can emit electron-positron pairs of luminosity ~10^{51} ergs/s for about 10s. If true, obviously, this mechanism may explain the origin of cosmic Gamma Ray Bursts. However, we point out that such a mechanism is does not work because (i) if pair production really occurs the supposed pre-existing supercritical electric field will be quenched and this discharge process may at best release ~10^{24} ergs of electromagnetic energy, and (ii) there is no way by which the trapped core thermal energy of few 10^{52} ergs can be transmitted electromagnetically on a time scale of ~10s or even on a much larger time scale. The only way the hot core can cool on a time scale of ~10 s or much shorter is by the well known process of emission of nu-antinu pairs.
A new method for calculations of electron-positron pair-creation probabilities in low-energy heavy-ion collisions is developed. The approach is based on the propagation of all one-electron states via the numerical solving of the time-dependent Dirac
The photon emissivity from the bremsstrahlung process ee-> eegamma occuring in the electrosphere at the bare surface of a strange quark star is calculated. For surface temperatures T<10^9K, the photon flux exceeds that of e+e- pairs that are produced
The probabilities of bound-free electron-positron pair creation are calculated for head-on collisions of bare uranium nuclei beyond the monopole approximation. The calculations are based on the numerical solving of the time-dependent Dirac equation i
Observations to date cannot distinguish neutron stars from self-bound bare quark stars on the basis of their gross physical properties such as their masses and radii alone. However, their surface luminosity and spectral characteristics can be signifi
We investigate the stability and $e^+e^-$ pair creation of supercritically charged superheavy nuclei, $ud$QM nuggets, strangelets, and strangeon nuggets based on Thomas-Fermi approximation. The model parameters are fixed by reproducing their masses a