ﻻ يوجد ملخص باللغة العربية
We investigate the stability and $e^+e^-$ pair creation of supercritically charged superheavy nuclei, $ud$QM nuggets, strangelets, and strangeon nuggets based on Thomas-Fermi approximation. The model parameters are fixed by reproducing their masses and charge properties reported in earlier publications. It is found that $ud$QM nuggets, strangelets, and strangeon nuggets may be more stable than ${}^{56}$Fe at $Agtrsim 315$, $5times10^4$, and $1.2times10^8$, respectively. For those stable against neutron emission, the most massive superheavy element has a baryon number $sim$965, while $ud$QM nuggets, strangelets, and strangeon nuggets need to have baryon numbers larger than $39$, 433, and $2.7times10^5$. The $e^+e^-$ pair creation will inevitably start for superheavy nuclei with charge numbers $Zgeq177$, $ud$QM nuggets with $Zgeq163$, strangelets with $Zgeq 192$, and strangeon nuggets with $Zgeq 212$. A universal relation $Q/R_e = left(m_e - bar{mu}_eright)/alpha$ is obtained at a given electron chemical potential $bar{mu}_e$, where $Q$ is the total charge and $R_e$ the radius of electron cloud. This predicts the maximum charge number by taking $bar{mu}_e=-m_e$. For supercritically charged objects with $bar{mu}_e<-m_e$, the decay rate for $e^+e^-$ pair production is estimated based on the JWKB approximation. It is found that most positrons are emitted at $tlesssim 10^{-15}$ s, while a long lasting positron emission is observed for large objects with $Rgtrsim 1000$ fm. The emission and annihilation of positrons from supercritically charged objects may be partially responsible for the short $gamma$-ray burst during the merger of binary compact stars, the 511 keV continuum emission, as well as the narrow faint emission lines in X-ray spectra from galaxies and galaxy clusters.
Droplets of absolutely stable strange quark matter (strangelets) immersed in a lepton background may be the energetically preferred composition of strange star crusts and of the interior of a new class of stars known as strangelet dwarfs. In this wor
Particles in quantum vortex states (QVS) carrying definite orbital angular momenta (OAM) brings new perspectives in various fundamental interaction processes. When unique properties arise in the QVS, understanding how OAM manifest itself between init
A new method for calculations of electron-positron pair-creation probabilities in low-energy heavy-ion collisions is developed. The approach is based on the propagation of all one-electron states via the numerical solving of the time-dependent Dirac
An exact and regular solution, describing a couple of charged and spinning black holes, is generated in an external electromagnetic field, via Ernst technique, in Einstein-Maxwell gravity. A wormhole instantonic solution interpolating between the two
Creation of electrons and positrons from light alone is a basic prediction of quantum electrodynamics, but yet to be observed. Here we show that it is possible to create ${>}10^8$ positrons by dual laser irradiation of a structured plasma target, at