ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational Lensing of the X-Ray Background by Clusters of Galaxies

88   0   0.0 ( 0 )
 نشر من قبل Alexandre Refregier
 تاريخ النشر 1996
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitational lensing by clusters of galaxies affects the cosmic X-ray background (XRB) by altering the observed density and flux distribution of background X-ray sources. At faint detection flux thresholds, the resolved X-ray sources appear brighter and diluted, while the unresolved component of the XRB appears dimmer and more anisotropic, due to lensing. The diffuse X-ray intensity in the outer halos of clusters might be lower than the sky-averaged XRB, after the subtraction of resolved sources. Detection of the lensing signal with a wide-field X-ray telescope could probe the mass distribution of a cluster out to its virialization boundary. In particular, we show that the lensing signature imprinted on the resolved component of the XRB by the cluster A1689, should be difficult but possible to detect out to 8 at the 2-4 sigma level, after 10^6 seconds of observation with the forthcoming AXAF satellite. The lensing signal is fairly insensitive to the lens redshift in the range 0.1<z<0.6. The amplitude of the lensing signal is however sensitive to the faint end slope of the number-flux relation for unresolved X-ray sources, and can thus help constrain models of the XRB. A search for X-ray arcs or arclets could identify the fraction of all faint sources which originate from extended emission of distant galaxies. The probability for a 3 sigma detection of an arclet which is stretched by a factor of about 3 after a 10^6 seconds observation of A1689 with AXAF, is roughly comparable to the fraction of all background X-ray sources that have an intrinsic size of order 1.



قيم البحث

اقرأ أيضاً

Dynamic velocity dispersion and mass estimates are given for a sample of five X-ray luminous rich clusters of galaxies at intermediate redshifts (z~0.3) drawn from a sample of 39 clusters for which we have obtained gravitational lens mass estimates. The velocity dispersions are determined from between 9 and 20 redshifts measured with the LDSS spectrograph of the William Herschel Telescope, and virial radii are determined from imaging using the UH8K mosaic CCD camera on the University of Hawaii 2.24m telescope. Including clusters with velocity dispersions taken from the literature, we have velocity dispersion estimates for 12 clusters in our gravitational lensing sample. For this sample we compare the dynamical velocity dispersion estimates with our estimates of the velocity dispersions made from gravitational lensing by fitting a singular isothermal sphere profile to the observed tangential weak lensing distortion as a function of radius. In all but two clusters, we find a good agreement between the velocity dispersion estimates based on spectroscopy and on weak lensing.
Discovery of strongly-lensed gravitational wave (GW) sources will unveil binary compact objects at higher redshifts and lower intrinsic luminosities than is possible without lensing. Such systems will yield unprecedented constraints on the mass distr ibution in galaxy clusters, measurements of the polarization of GWs, tests of General Relativity, and constraints on the Hubble parameter. Excited by these prospects, and intrigued by the presence of so-called heavy black holes in the early detections by LIGO-Virgo, we commenced a search for strongly-lensed GWs and possible electromagnetic counterparts in the latter stages of the second LIGO observing run (O2). Here, we summarise our calculation of the detection rate of strongly-lensed GWs, describe our review of BBH detections from O1, outline our observing strategy in O2, summarize our follow-up observations of GW170814, and discuss the future prospects of detection.
We present a new method for measuring the projected mass distributions of galaxy clusters. The gravitational amplification is measured by comparing the joint distribution in redshift and magnitude of galaxies behind the cluster with that of field gal axies. We show that the total amplification is directly related to the surface mass density in the weak field limit, and so it is possible to map the mass distribution of the cluster. The method is shown to be limited by discreteness noise and galaxy clustering behind the lens. Galaxy clustering sets a lower limit to the error along the redshift direction, but a clustering independent lensing signature may be obtained from the magnitude distribution at fixed redshift. Statistical techniques are developed for estimating the surface mass density of the cluster. We extend these methods to account for any obscuration by cluster halo dust, which may be mapped independently of the dark matter. We apply the method to a series of numerical simulations and show the feasibility of the approach. We consider approximate redshift information, and show how the mass estimates are degraded.
Due to the finite amount of observational data, the best-fit parameters corresponding to the reconstructed cluster mass have uncertainties. In turn, these uncertainties affect the inferences made from these mass models. Following our earlier work, we have studied the effect of such uncertainties on the singularity maps in simulated and actual galaxy clusters. The mass models for both simulated and real clusters have been constructed using grale. The final best-fit mass models created using grale give the simplest singularity maps and a lower limit on the number of point singularities that a lens has to offer. The simple nature of these singularity maps also puts a lower limit on the number of three image (tangential and radial) arcs that a cluster lens has. Hence, we estimate the number of galaxy sources giving rise to the three image arcs, which can be observed with the James Webb Space Telescope (JWST). We find that we expect to observe at least 20-30 tangential and 5-10 radial three-image arcs in the Hubble Frontier Fields cluster lenses with the JWST.
110 - D. Clowe , G. Luppino , N. Kaiser 2003
We use weak lensing shear measurements of six z>0.5 clusters of galaxies to derive the mean lensing redshift of the background galaxies used to measure the shear. Five of these clusters are compared to X-ray mass models and verify a mean lensing reds hift for a 23<R<26.3, R-I<0.9 background galaxy population in good agreement with photometric redshift surveys of the HDF-S. The lensing strength of the six clusters is also analyzed as a function of the magnitude of the background galaxies, and an increase in shear with increasing magnitude is detected at moderate significance. The change in the strength of the shear is presumed to be caused by an increase in the mean redshift of the background galaxies with increasing magnitude, and the degree of change detected is also in agreement with those in photometric redshift surveys of the HDF-S.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا