ﻻ يوجد ملخص باللغة العربية
We analyse the surface density of very faint galaxies at the limit of the sky background noise in the field of the cluster of galaxies Cl0024+1654. The radial variation of their number density in the magnitude bins $B=26-28$ and $I=24-26.5$ displays an (anti)bias magnification effect for $I < 24$ which provides the redshift range of the populations seen in $B$ and $I$. The depletion curve can be reproduced with two redshift populations with $60% pm 10%$ of the $B$ galaxies between $z=0.9$ and $z=1.1$ and the remaining at a redshift close to $z=3$. The $I$ selected population is similar but with a minimum extending from the $B$ inner critical line to $R_I=60$. Whatever the cosmological model, the $I$-selected galaxies spread up to a larger redshift with about 20% above $z > 4$. Using a model for the gravitational potential, the locations of the two extreme critical lines for the B and I galaxies favour $Omega_{Lambda}$-dominated flat universes with a cosmological constant ranging from 0.6 to 0.9. The result is confirmed by a preliminary investigation of A370. We discuss the method to search the last critical line and the various biases.
The study of the magnification bias produced on high-redshift sub-millimetre galaxies by foreground galaxies through the analysis of the cross-correlation function was recently demonstrated as an interesting independent alternative to the weak-lensin
Using moderate-resolution Keck spectra, we have examined the velocity profiles of 15 members of cluster Cl0024+1654 at z=0.4. WFPC2 images of the cluster members have been used to determine structural parameters, including disk sizes, orientations, a
We investigate to which precision local magnification ratios, $mathcal{J}$, ratios of convergences, $f$, and reduced shears, $g = (g_{1}, g_{2})$, can be determined model-independently for the five resolved multiple images of the source at $z_mathrm{
We have obtained U and R band observations of the depletion of background galaxies due to the gravitational lensing of the galaxy cluster CL0024+1654 (z=0.39). The radial depletion curves show a significant depletion in both bands within a radius of
Motivated by recent observations of galaxies dominated by emission lines, which show evidence of being metal poor with young stellar populations, we present calculations of multiple model grids with a range of abundances, ionization parameters, and s