ﻻ يوجد ملخص باللغة العربية
We investigate to which precision local magnification ratios, $mathcal{J}$, ratios of convergences, $f$, and reduced shears, $g = (g_{1}, g_{2})$, can be determined model-independently for the five resolved multiple images of the source at $z_mathrm{s}=1.675$ in CL0024. We also determine if a comparison to the respective results obtained by the parametric modelling program Lenstool and by the non-parametric modelling program Grale can detect biases in the lens models. For these model-based approaches we additionally analyse the influence of the number and location of the constraints from multiple images on the local lens properties determined at the positions of the five multiple images of the source at $z_mathrm{s}=1.675$. All approaches show high agreement on the local values of $mathcal{J}$, $f$, and $g$. We find that Lenstool obtains the tightest confidence bounds even for convergences around one using constraints from six multiple image systems, while the best Grale model is generated only using constraints from all multiple images with resolved brightness features and adding limited small-scale mass corrections. Yet, confidence bounds as large as the values themselves can occur for convergences close to one in all approaches. Our results are in agreement with previous findings, supporting the light-traces-mass assumption and the merger hypothesis for CL0024. Comparing the three different approaches allows to detect modelling biases. Given that the lens properties remain approximately constant over the extension of the image areas covered by the resolvable brightness features, the model-independent approach determines the local lens properties to a comparable precision but within less than a second. (shortened)
The galaxy-scale gravitational lens B0128+437 generates a quadrupole-image configuration of a background quasar that shows milli-arcsecond-scale subcomponents in the multiple images observed with VLBI. As this multiple-image configuration including t
We derive an accurate mass distribution of the rich galaxy cluster Cl0024+1654 (z=0.395) based on deep Subaru BR_{c}z imaging and our recent comprehensive strong lensing analysis of HST/ACS/NIC3 observations. We obtain the weak lensing distortion and
We analyse the surface density of very faint galaxies at the limit of the sky background noise in the field of the cluster of galaxies Cl0024+1654. The radial variation of their number density in the magnitude bins $B=26-28$ and $I=24-26.5$ displays
When light from a distant source object, like a galaxy or a supernova, travels towards us, it is deflected by massive objects that lie on its path. When the mass density of the deflecting object exceeds a certain threshold, multiple, highly distorted
Applying the distance sum rule in strong gravitational lensing (SGL) and type Ia supernova (SN Ia) observations, one can provide an interesting cosmological model-independent method to determine the cosmic curvature parameter $Omega_k$. In this paper