ﻻ يوجد ملخص باللغة العربية
Two qualitatively different modes of ending superluminal expansion are possible in extended inflation. One mode, different from the one envoked in most extended models to date, easily avoids making big bubbles that distort the cosmic microwave background radiation (CMBR). In this mode, the spectrum of density fluctuations is found to be scale-free, $P(k) propto k^n$, where $n$ might lie anywhere between 0.5 and 1.0 (whereas, previously, it appeared that the range $1.0> n gtsim 0.84$ was disallowed).
In SuperCool Inflation (SCI), a technically natural and thermal effect gives a graceful exit to old inflation. The Universe starts off hot and trapped in a false vacuum. The Universe supercools and inflates solving the horizon and flatness problems.
A seemingly simple question, how does warm inflation exit gracefully?, has a more complex answer than in a cold paradigm. It has been highlighted here that whether warm inflation exits gracefully depends on three independent choices: The form of the
In this Letter, we describe how a spectrum of entropic perturbations generated during a period of slow contraction can source a nearly scale-invariant spectrum of curvature perturbations on length scales larger than the Hubble radius during the trans
Positively-curved, oscillatory universes have recently been shown to have important consequences for the pre-inflationary dynamics of the early universe. In particular, they may allow a self-interacting scalar field to climb up its potential during a
We present the first computation of the cosmological perturbations generated during inflation up to second order in deviations from the homogeneous background solution. Our results, which fully account for the inflaton self-interactions as well as fo