ﻻ يوجد ملخص باللغة العربية
In this Letter, we describe how a spectrum of entropic perturbations generated during a period of slow contraction can source a nearly scale-invariant spectrum of curvature perturbations on length scales larger than the Hubble radius during the transition from slow contraction to a classical non-singular bounce (the `graceful exit phase). The sourcing occurs naturally through higher-order scalar field kinetic terms common to classical (non-singular) bounce mechanisms. We present a concrete example in which, by the end of the graceful exit phase, the initial entropic fluctuations have become negligible and the curvature fluctuations have a nearly scale-invariant spectrum with an amplitude consistent with observations.
The observed temperature fluctuations in the cosmic microwave background can be traced back to primordial curvature modes that are sourced by adiabatic and/or entropic matter perturbations. In this paper, we explore the entropic mechanism in the cont
A seemingly simple question, how does warm inflation exit gracefully?, has a more complex answer than in a cold paradigm. It has been highlighted here that whether warm inflation exits gracefully depends on three independent choices: The form of the
Perfect fluids are modeled by using an effective field theory approach which naturally gives a self-consistent and unambiguous description of the intrinsic non-adiabatic contribution to pressure variations. We study the impact of intrinsic entropy pe
It is known that some cosmological perturbations are conformal invariant. This facilitates the studies of perturbations within some gravitational theories alternative to general relativity, for example the scalar-tensor theory, because it is possible
We discuss the difference between various gauge-invariant quantities typically used in single-field inflation, namely synchronous $zeta_s$, comoving $zeta_c$, and unitary $zeta_u$ curvatures. We show that conservation of $zeta_c$ outside the horizon