ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Nature of Velocity Fields in High z Galaxies

52   0   0.0 ( 0 )
 نشر من قبل Jason X. Prochaska
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the gas kinematics of damped Lya systems (DLAs) hosting high z gamma-ray bursts (GRBs) and those toward quasars (QSO-DLAs) focusing on threestatistics: (1) dv, the velocity interval encompassing 90% of the totaloptical depth, (2,3) Wsi and Wciv, the rest equivalent widths of the SiII1526 and CIV1548 transitions. The dv distributions of the GRB-DLAs and QSO-DLAs are similar, each has median dv~80km/s and a significant tail to several hundred km/s. This suggests comparable galaxy masses for the parent populations of GRB-DLAs and QSO-DLAs and we infer the average dark matter halo mass of GRB galaxies is <~10^{12} Msol. The unique configuration of GRB-DLA sightlines and the presence (and absence) of fine-structure absorption together give special insight into the nature of high z, protogalactic velocity fields. The data support a scenario where the dv statistic reflects dynamics in the interstellar medium (ISM) and Wsi traces motions outside the ISM (e.g. halo gas, galactic-scale winds). The Wsi statistic and gas metallicity [M/H] are tightly correlated, especially for the QSO-DLAs: [M/H]=a + b log(Wsi/1A) with a=-0.92+/-0.05 and b=-1.41+/-0.10. We argue that the Wsi statistic primarily tracks dynamical motions in the halos of high z galaxies and interpret this correlation as a mass-metallicity relation with very similar slope to the trend observed in local, low-metallicity galaxies. Finally, the GRB-DLAs exhibit systematically larger Wsi values (>0.5A) than the QSO-DLAs (<Wsi>~ 0.5A) which may suggest galactic-scale outflows contribute to the largest observed velocity fields.



قيم البحث

اقرأ أيضاً

Spiral galaxies can be affected by interactions in clusters, that also may distort the internal velocity field. If unrecognized from single-slit spectroscopy, this could lead to a wrong determination of the maximum rotation velocity as pointed out by Ziegler et al. (2003). This parameter directly enters into the Tully-Fisher relation, an important tool to investigate the evolution of spiral galaxies. To overcome this problem, we measure the 2D-velocity fields by observing three different slit positions per galaxy using FORS2 at the VLT providing us with full coverage of each galaxy and an adequate spatial resolution. The kinematic properties are compared to structural features determined on the HST/ACS images to assess possible interaction processes. As a next step, the whole analysis will be performed for three more clusters, so that we will be able to establish a high-accuracy TFR for spirals at z~0.5.
142 - David T. Maltby 2019
We investigate the prevalence of galactic-scale outflows in post-starburst (PSB) galaxies at high redshift ($1 < z < 1.4$), using the deep optical spectra available in the UKIDSS Ultra Deep Survey (UDS). We use a sample of $sim40$ spectroscopically c onfirmed PSBs, recently identified in the UDS field, and perform a stacking analysis in order to analyse the structure of strong interstellar absorption features such as Mg ii ($lambda2800$ Ang.). We find that for massive ($M_* > 10^{10}rm,M_{odot}$) PSBs at $z > 1$, there is clear evidence for a strong blue-shifted component to the Mg ii absorption feature, indicative of high-velocity outflows ($v_{rm out}sim1150pm160rm,km,s^{-1}$) in the interstellar medium. We conclude that such outflows are typical in massive PSBs at this epoch, and potentially represent the residual signature of a feedback process that quenched these galaxies. Using full spectral fitting, we also obtain a typical stellar velocity dispersion $sigma_*$ for these PSBs of $sim200rm,km,s^{-1}$, which confirms they are intrinsically massive in nature (dynamical mass $M_{rm d}sim10^{11}rm,M_{odot}$). Given that these high-$z$ PSBs are also exceptionally compact ($r_{rm e}sim1$--$2rm,kpc$) and spheroidal (Sersic index $nsim3$), we propose that the outflowing winds may have been launched during a recent compaction event (e.g. major merger or disc collapse) that triggered either a centralised starburst or active galactic nuclei (AGN) activity. Finally, we find no evidence for AGN signatures in the optical spectra of these PSBs, suggesting they were either quenched by stellar feedback from the starburst itself, or that if AGN feedback is responsible, the AGN episode that triggered quenching does not linger into the post-starburst phase.
We present analysis of spectral energy distributions (SEDs) from mid-infrared through X-ray of a sample of 420 hard X-ray selected, z-band and Spitzer/IRAC detected active galactic nuclei (AGN) and AGN candidates from the GOODS multiwavelength survey . We fit local empirical SED templates of both normal and active galaxies to the rest-frame luminosities calculated from spectroscopic (where available) and photometric redshifts. The majority of the optically stellar-dominated (with early-type galaxy fits) sources are moderately luminous (L_X,2-10 keV ~ 10^43 erg/s) hard X-ray sources with high X-ray hardness ratios (HR > 0.2), high MIR luminosities and red MIR colors in excess of a typical stellar dominated elliptical galaxy. These sources likely harbor heavily obscured (though Compton-thin) AGN. The observed ratio of obscured to unobscured AGN has an integrated mean of ~3.4:1 but declines with increasing redshift. This effect has been explained by Treister et al. (2004) as an observational bias triggered by the lack of spectroscopic redshifts at R > 24 which are predominantly higher redshift obscured sources.
456 - John A. Peacock 2013
By 1917, V.M. Slipher had singlehandedly established a tendency for spiral nebulae to be redshifted (21 out of 25 cases). From a modern perspective, it could seem surprising that the expansion of the universe was not announced at this point. Examinat ion of Sliphers papers shows that he reached a more subtle conclusion: the identification of cosmological peculiar velocities, including the bulk motion of the Milky Way, leading to a beautiful argument in favour of nebulae as distant stellar systems. Nevertheless, Sliphers data actually contain evidence at >8sigma for a positive mean velocity, even after subtracting the dipole owing to the motion of the observer. In 1929, Hubble estimated distances for a sample of no greater depth, using redshifts due almost entirely to Slipher. Hubbles distances were flawed in two distinct ways: in addition to an incorrect absolute calibration, the largest distances were systematically under-estimated. Nevertheless, he claimed the detection of a linear distance-redshift relation. Statistically, the evidence for such a correlation is less strong than the simple evidence for a positive mean velocity in Hubbles sample. Comparison with modern data shows that a sample of more than twice Hubbles depth would generally be required in order to reveal clearly the global linear expansion in the face of the noise from peculiar velocities. When the theoretical context of the time is examined, the role of the de Sitter model and its prediction of a linear distance-redshift relation looms large. A number of searches for this relation were performed prior to Hubble over the period 1924-1928, with a similar degree of success. All were based on the velocities measured by Slipher, whose work from a Century ago stands out both for the precision of his measurements and for the subtle clarity of the arguments he employed to draw correct conclusions from them.
99 - S. Komossa , D. Xu , H. Zhou 2008
We have studied the properties of Seyfert galaxies with high [OIII]5007 blueshifts (`blue outliers), originally identified because of their strong deviation from the M_BH - sigma relation of normal, narrow-line Seyfert 1 (NLS1) and broad-line Seyfert 1 (BLS1) galaxies. These blue outliers turn out to be important test-beds for models of the narrow-line region (NLR), for mechanisms of driving large-scale outflows, for links between NLS1 galaxies and radio galaxies, and for orientation-dependent NLS1 models. We report the detection of a strong correlation of line blueshift with ionization potential in each galaxy, including the measurement of coronal lines with radial velocities up to 500--1000 km/s. All [OIII] blue outliers have narrow widths of their broad Balmer lines and high Eddington ratios. While the presence of non-shifted low-ionization lines signifies the presence of a classical outer quiescent NLR in blue outliers, we also report the absence of any second, non-blueshifted [OIII] component from a classical inner NLR. These results place tight constraints on NLR models. We favor a scenario in which the NLR clouds are entrained in a decelerating wind which explains the strong stratification and the absence of a zero-blueshift inner NLR of blue outliers. The origin of the wind remains speculative at this time (collimated radio plasma, thermal winds, radiatively accelerated clouds). It is perhaps linked to the high Eddington ratios of blue outliers. Similar, less powerful winds could be present in all Seyfert galaxies, but would generally only affect the coronal line region (CLR), or level off even before reaching the CLR. Similarities between blue outliers in NLS1 galaxies and (compact) radio sources are briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا