ﻻ يوجد ملخص باللغة العربية
The luminosity functions of galaxies and quasars provide invaluable information about galaxy and quasar formation. Estimating the luminosity function from magnitude limited samples is relatively straightforward, provided that the distances to the objects in the sample are known accurately; techniques for doing this have been available for about thirty years. However, distances are usually known accurately for only a small subset of the sample. This is true of the objects in the Sloan Digital Sky Survey, and will be increasingly true of the next generation of deep multi-color photometric surveys. Estimating the luminosity function when distances are only known approximately (e.g., photometric redshifts are available, but spectroscopic redshifts are not) is more difficult. I describe two algorithms which can handle this complication: one is a generalization of the V_max algorithm, and the other is a maximum likelihood approach. Because these methods account for uncertainties in the distance estimate, they impact a broader range of studies. For example, they are useful for studying the abundances of galaxies which are sufficiently nearby that the contribution of peculiar velocity to the spectroscopic redshift is not negligible, so only a noisy estimate of the true distance is available. In this respect, peculiar velocities and photometric redshift errors have similar effects. The methods developed here are also useful for estimating the stellar luminosity function in samples where accurate parallax distances are not available.
Accurately characterizing the redshift distributions of galaxies is essential for analysing deep photometric surveys and testing cosmological models. We present a technique to simultaneously infer redshift distributions and individual redshifts from
We investigate the photometric redshift accuracy achievable with the AKARI infrared data in deep multi-band surveys, such as in the North Ecliptic Pole field. We demonstrate that the passage of redshifted policyclic aromatic hydrocarbons and silicate
Improving distance measurements in large imaging surveys is a major challenge to better reveal the distribution of galaxies on a large scale and to link galaxy properties with their environments. Photometric redshifts can be efficiently combined with
With a recently constructed composite quasar spectrum and the chi^2 minimization technique, we demonstrated a general method to estimate the photometric redshifts of a large sample of quasars by deriving the theoretical color-redshift relations and c
We outline how redshift-space distortions (RSD) can be measured from the angular correlation function w({theta}), of galaxies selected from photometric surveys. The natural degeneracy between RSD and galaxy bias can be minimized by comparing results