ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring Redshift-Space Distortions using Photometric Surveys

203   0   0.0 ( 0 )
 نشر من قبل Ashley Ross Dr.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ashley J Ross




اسأل ChatGPT حول البحث

We outline how redshift-space distortions (RSD) can be measured from the angular correlation function w({theta}), of galaxies selected from photometric surveys. The natural degeneracy between RSD and galaxy bias can be minimized by comparing results from bins with top-hat galaxy selection in redshift, and bins based on the radial position of galaxy pair centres. This comparison can also be used to test the accuracy of the photometric redshifts. The presence of RSD will be clearly detectable with the next generation of photometric redshift surveys. We show that the Dark Energy Survey (DES) will be able to measure f(z){sigma}_8(z) to a 1{sigma} accuracy of (17 {times} b)%, using galaxies drawn from a single narrow redshift slice centered at z = 1. Here b is the linear bias, and f is the logarithmic rate of change of the linear growth rate with respect to the scale factor. Extending to measurements of w({theta}) for a series of bins of width 0.02(1 + z) over 0.5 < z < 1.4 will measure {gamma} to a 1{sigma} accuracy of 25%, given the model f = {Omega}_m(z)^{gamma}, and assuming a linear bias model that evolves such that b = 0.5 + z (and fixing other cosmological parameters). The accuracy of our analytic predictions is confirmed using mock catalogs drawn from simulations conducted by the MICE collaboration.



قيم البحث

اقرأ أيضاً

329 - Alvise Raccanelli 2015
The peculiar motion of galaxies can be a particularly sensitive probe of gravitational collapse. As such, it can be used to measure the dynamics of dark matter and dark energy as well the nature of the gravitational laws at play on cosmological scale s. Peculiar motions manifest themselves as an overall anisotropy in the measured clustering signal as a function of the angle to the line-of-sight, known as redshift-space distortion (RSD). Limiting factors in this measurement include our ability to model non-linear galaxy motions on small scales and the complexities of galaxy bias. The anisotropy in the measured clustering pattern in redshift-space is also driven by the unknown distance factors at the redshift in question, the Alcock-Paczynski distortion. This weakens growth rate measurements, but permits an extra geometric probe of the Hubble expansion rate. In this chapter we will briefly describe the scientific background to the RSD technique, and forecast the potential of the SKA phase 1 and the SKA2 to measure the growth rate using both galaxy catalogues and intensity mapping, assessing their competitiveness with current and future optical galaxy surveys.
Redshift space distortions (RSD) in the void-galaxy correlation $xi^s$ provide information on the linear growth rate of structure in low density environments. Accurate modelling of these RSD effects can also allow the use of voids in competitive Alco ck-Paczynski measurements. Linear theory models of $xi^s$ are able to provide extremely good descriptions of simulation data on all scales provided the real space void positions are known. However, by reference to simulation data we demonstrate the failure of the assumptions implicit in current models of $xi^s$ for voids identified directly in redshift space, as would be simplest using real observational data. To overcome this problem we instead propose using a density-field reconstruction method based on the Zeldovich approximation to recover the real space void positions from redshift space data. We show that this recovers the excellent agreement between theory and data for $xi^s$. Performing the reconstruction requires an input cosmological model so, to be self-consistent, we have to perform reconstruction for every model to be tested. We apply this method to mock galaxy and void catalogues in the Big MultiDark $N$-body simulation and consistently recover the fiducial growth rate to a precision of $3.4%$ using the simulation volume of $(2.5;h^{-1}mathrm{Gpc})^3$.
Cosmological galaxy surveys aim at mapping the largest volumes to test models with techniques such as cluster abundance, cosmic shear correlations or baryon acoustic oscillations (BAO), which are designed to be independent of galaxy bias. Here we exp lore an alternative route to constrain cosmology: sampling more moderate volumes with the cross-correlation of photometric and spectroscopic surveys. We consider the angular galaxy-galaxy autocorrelation in narrow redshift bins and its combination with different probes of weak gravitational lensing (WL) and redshift space distortions (RSD). Including the cross-correlation of these surveys improves by factors of a few the constraints on both the dark energy equation of state w(z) and the cosmic growth history, parametrized by gamma. The additional information comes from using many narrow redshift bins and from galaxy bias, which is measured both with WL probes and RSD, breaking degeneracies that are present when using each method separately. We show forecasts for a joint w(z) and gamma figure of merit using linear scales over a deep (i<24) photometric survey and a brighter (i<22.5) spectroscopic or very accurate (0.3%) photometric redshift survey. Magnification or shear in the photometric sample produce FoM that are of the same order of magnitude of those of RSD or BAO over the spectroscopic sample. However, the cross-correlation of these probes over the same area yields a FoM that is up to a factor 100 times larger. Magnification alone, without shape measurements, can also be used for these cross-correlations and can produce better results than using shear alone. For a spectroscopic follow-up survey strategy, measuring the spectra of the foreground lenses to perform this cross-correlation provides 5 times better FoM than targeting the higher redshift tail of the galaxy distribution to study BAO over a 2.5 times larger volume.
We have derived estimators for the linear growth rate of density fluctuations using the cross-correlation function of voids and haloes in redshift space, both directly and in Fourier form. In linear theory, this cross-correlation contains only monopo le and quadrupole terms. At scales greater than the void radius, linear theory is a good match to voids traced out by haloes in N-body simulations; small-scale random velocities are unimportant at these radii, only tending to cause small and often negligible elongation of the redshift-space cross-correlation function near its origin. By extracting the monopole and quadrupole from the cross-correlation function, we measure the linear growth rate without prior knowledge of the void profile or velocity dispersion. We recover the linear growth parameter $beta$ to 9% precision from an effective volume of 3(Gpc/h)^3 using voids with radius greater than 25Mpc/h. Smaller voids are predominantly sub-voids, which may be more sensitive to the random velocity dispersion; they introduce noise and do not help to improve the measurement. Adding velocity dispersion as a free parameter allows us to use information at radii as small as half of the void radius. The precision on $beta$ is reduced to approximately 5%. Contrary to the simple redshift-space distortion pattern in overdensities, voids show diverse shapes in redshift space, and can appear either elongated or flattened along the line of sight. This can be explained by the competing amplitudes of the local density contrast, plus the radial velocity profile and its gradient, with the latter two factors being determined by the cumulative density profile of voids. The distortion pattern is therefore determined solely by the void profile and is different for void-in-cloud and void-in-void. This diversity of redshift-space void morphology complicates measurements of the Alcock-Paczynski effect using voids.
127 - Camille Bonvin 2017
We compute a general expression for the contribution of vector perturbations to the redshift-space distortion of galaxy surveys. We show that they contribute to the same multipoles of the correlation function as scalar perturbations and should thus i n principle be taken into account in data analysis. We derive constraints for next-generation surveys on the amplitude of two sources of vector perturbations, namely non-linear clustering and topological defects. While topological defects leave a very small imprint on redshift-space distortions, we show that the multipoles of the correlation function are sensitive to vorticity induced by non-linear clustering. Therefore future redshift surveys such as DESI or the SKA should be capable of measuring such vector modes, especially with the hexadecapole which appears to be the most sensitive to the presence of vorticity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا