ﻻ يوجد ملخص باللغة العربية
Central gravitational image detection is very important for the study of the mass distribution of the inner parts ($sim 100$ pc) of lens galaxies. However, the detection of such images is extremely rare and difficult. We present a 1.7-GHz High Sensitivity Array (HSA) observation of the double-image radio lens system B1030+074. The data are combined with archive VLBA and global-VLBI observations, and careful consideration is given to the effects of noise, {sc clean}ing and self-calibration. An upper limit is derived for the strength of the central image of 180 $mu$Jy (90% confidence level), considerably greater than would have been expected on the basis of a simple analysis. This gives a lower limit of $sim 10^3$ for the ratio of the brightest image to the central image. For cusped models of lens mass distributions, we have made use of this non-detection to constrain the relation between inner power-law slope $beta$ of the lensing galaxy mass profile, and its break radius $r_b$. For $r_b>130$ pc the power-law slope is required to be close to isothermal ($beta>1.8$). A flatter inner slope is allowed if a massive black hole is present at the centre of the lensing galaxy, but the effect of the black hole is small unless it is $sim 10$ times more massive than that implied by the relation between black hole mass and stellar velocity dispersion. By comparing four epochs of VLBI observations, we also detected possible superluminal motion in the jet in the brighter A image. The B jet remains unresolved, as expected from a simple lens model of the system.
We have analysed archival VLA 8.4-GHz monitoring data of the gravitational lens system JVAS B1030+074 with the goal of determining the time delay between the two lensed images via the polarization variability. In contrast to the previously published
We present an overview of all the observations (radio - VLA, MERLIN, VLBA,EVN - and optical - WFPC2 and NICMOS -) that were initially used to confirm the gravitational lens nature of the double JVAS system B1030+074. Since the 1.56 arcsec system show
We identify a third image in the unique quasar lens SDSS J1029+2623, the second known quasar lens produced by a massive cluster of galaxies. The spectrum of the third image shows similar emission and absorption features, but has a redder continuum th
A search for 6 arcsec to 15 arcsec image separation lensing in the Jodrell Bank-Very Large Array Astrometric Survey (JVAS) and the Cosmic Lens All-Sky Survey (CLASS) by Phillips et al. found thirteen group and cluster gravitational lens candidates. T
Strong gravitational lensing distorts our view of sources at cosmological distances but brings invaluable constraints on the mass content of foreground objects and on the geometry and properties of the Universe. We report the detection of a third con