ﻻ يوجد ملخص باللغة العربية
We have analysed archival VLA 8.4-GHz monitoring data of the gravitational lens system JVAS B1030+074 with the goal of determining the time delay between the two lensed images via the polarization variability. In contrast to the previously published total intensity variations, we detect correlated variability in polarized flux density, percentage polarization and polarization position angle. The latter includes a fast ($<$5d) 90-degree rotation event. Our best estimate of the time delay is $146pm6$d (1$sigma$), considerably longer than that predicted by the lens model presented in the discovery paper. Additional model constraints will be needed before this system can be used to measure $H_0$, for example through a detection of the lensed sources VLBI jet in image B. No time delay is visible in total flux density and this is partially due to much greater scatter in the image B measurements. This must be due to a propagation effect as the radio waves pass through the ISM of the lensing galaxies or the Galaxy.
We present an analysis of archival multi-frequency Very Large Array monitoring data of the two-image gravitational lens system CLASS B1600+434, including the polarization properties at 8.5 GHz. From simulating radio light curves incorporating realist
Central gravitational image detection is very important for the study of the mass distribution of the inner parts ($sim 100$ pc) of lens galaxies. However, the detection of such images is extremely rare and difficult. We present a 1.7-GHz High Sensit
We have reanalysed the 1996/1997 VLA monitoring data of the gravitational lens system JVAS B0218+357 to produce improved total flux density and polarization variability curves at 15, 8.4 and 5 GHz. This has been done using improved calibration techni
We present an overview of all the observations (radio - VLA, MERLIN, VLBA,EVN - and optical - WFPC2 and NICMOS -) that were initially used to confirm the gravitational lens nature of the double JVAS system B1030+074. Since the 1.56 arcsec system show
We present Very Large Array (VLA) 8.5-GHz light curves of the two lens images of the Cosmic Lens All Sky Survey (CLASS) gravitational lens B1600+434. We find a nearly linear decrease of 18-19% in the flux densities of both lens images over a period o