ﻻ يوجد ملخص باللغة العربية
We present a reconstruction of total solar irradiance since 1610 to the present based on variations of the surface distribution of the solar magnetic field. The latter is calculated from the historical record of the Group sunspot number using a simple but consistent physical model. Our model successfully reproduces three independent data sets: total solar irradiance measurements available since 1978, total photospheric magnetic flux from 1974 and the open magnetic flux since 1868 (as empirically reconstructed from the geomagnetic aa-index). The model predicts an increase in the total solar irradiance since the Maunder Minimum of about 1.3 rm{Wm$^{-2}$}.
One of the important open questions in solar irradiance studies is whether long-term variability (i.e. on timescales of years and beyond) can be reconstructed by means of models that describe short-term variability (i.e. days) using solar proxies as
Reliable historical records of total solar irradiance (TSI) are needed for climate change attribution and research to assess the extent to which long-term variations in the Suns radiant energy incident on the Earth may exacerbate (or mitigate) the mo
We use 5 test data series to quantify putative discontinuities around 1946 in 5 annual-mean sunspot number or group number sequences. The series tested are: the original and n
The Earths primary source of energy is the radiant energy generated by the Sun, which is referred to as solar irradiance, or total solar irradiance (TSI) when all of the radiation is measured. A minor change in the solar irradiance can have a signifi
Ground-based whole sky cameras are extensively used for localized monitoring of clouds nowadays. They capture hemispherical images of the sky at regular intervals using a fisheye lens. In this paper, we propose a framework for estimating solar irradi